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SOUNDINGS

This front section of the

Journal includes acoustical news, views, reviews, and general tutorial or select-

ed research artcles chosen for wide acoustical interest and written for broad acoustical readership.

ACOUSTICAL NEWS—USA

Elaine Moran

Acoustical Society of America, 500 Sunnyside Boulevard, Woodbury, New York 11797

Editor’s Note: Deadline dates for news items and notices are 2 months prior to publication.

New Fellows of the Acoustical Society of America

Klaus Scherer—For contributions to the
understanding of emotions in speech.

Robert J. Bernhard—For contributions
to computational acoustics and active
noise control.

Arnold Tubis—For contributions to co-
chlear mechanics and musical acoustics.

Adnan Akay named Lord Professor in

mechanical engineering at Carnegie Mellon 9-13 Feb.

Adnan Akay, professor and head,
Mechanical Engineering Department,
has been named recipient of the
Thomas Lord Professorship at Carn-
egie Mellon University.

Akay has been with Carnegie
Mellon since 1992. As head of the De-
partment of Mechanical Engineering,
he has been instrumental in substan-
tially reshaping the course curriculum
and refocusing the research efforts of 4_7 june
the department to allow for new initia-
tives. His research, which has resulted
in extensive publications in profes-
sional research journals, reviews, ab-

' stracts and monographs, covers funda- 29_og jJune
mental issues related to generation and transmission of sound and vibration,
as well as engineering aspects of noise and vibration control.

Akay is a Fellow of the Acoustical Society of America and has re-
ceived the American Society of Mechanical Engine€¢ASME) Dedicated
Service Award.

19-21 Feb.

5-8 April

26 Jun.—1 Jul.

USA Meetings Calendar

Listed below is a summary of meetings related to acoustics to be held
in the U.S. in the near future. The month/year notation refers to the issue if—12 July
which a complete meeting announcement appeared.
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1998

1998 Ocean Sciences Meeting, San Diegd,Abreri-
can Geophysical Union, 2000 Florida Ave., N.W.,
Washington, DC 20009, Tel.: 202-462-6900; Fax: 202-
328-0566; WWW: http://www.agu.olg

23rd Annual National Hearing Conservation Associa-
tion Conference, Albuquerque, NYNHCA, 611 E.
Wells St., Milwaukee, WI53202; Tel.: 414-276-6045;
Fax: 414-276-3349; E-mail: nhca@globaldialog.dom
NOISE-CON 98, Ypsilanti, M[Noise Control Founda-
tion, P.O. Box 2469, Arlington Branch, Poughkeepsie,
NY 12603; Tel.: 914-462-4006; Fax: 914-463-0201; E-
mail: noisecon98@aol.com; WWW: users.aol.com/
noisecon98/nc98cfp.html].

7th Symposium on Cochlear Implants in Children, lowa
City, IA [Center for Conferences and Institutes, The
University of lowa, 249 lowa Memorial Union, lowa
City, IA52242-1317; Tel.: 800-551-9029; Fax: 319-
335-3533. Deadline for receipt of abstracts: 1 March

16th International Congress on Acoustics/135th meet-
ing of the Acoustical Society of America, Seattle, WA
[ASA, 500 Sunnyside Blvd., Woodbury, NY 11797,
Tel.: 516-576-2360; Fax: 516-576-2377; E-mail:
asa@aip.org, WWW: http://asa.aip.@rg

International Symposium on Musical Acoustics, ISMA
98, Leavenworth, WAMaurits Hudig, Catgut Acousti-
cal Society, 112 Essex Ave., Montclair, NJ 07042, Fax:
201-744-9197; E-mail: catgutas@msn.com, WWW:
www.boystown.org/isma98

Vienna and the Clarinet, Ohio State Univ., Columbus,
OH [Keith Koons, Music Dept., Univ. of Central

© 1998 Acoustical Society of America 631



9-14 Aug.

13-17 Sept.

12-16 Oct.

Florida, P.O. Box 161354, Orlando, FL

32816-1354, Tel.: 407-823-5116; E-mail:
kkons@pegasus.cc.ucf.gdu

International Acoustic Emission Conference, Hawaii 15-19 March
[Karyn S. Downs, Lockheed Martin Astronautics, PO

Box 179, M. S. DC3005, Denver, CO 80201; Tel.: 303-

977-1769; Fax: 303-971-7698; E-mail:
karyn.s.downs@Imco.com

American Academy of Otolaryngology—Head and27-30 June
Neck Surgery, San Francisco, American Academy
of Otolaryngology—Head and Neck Surgery, One

Prince St., Alexandria, VA 22314 Tel.: 703-836-4444;

Fax: 703-683-510D

136th meeting of the Acoustical Society of America,

Norfolk, VA [ASA, 500 Sunnyside Blvd., Woodbury,

632  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998

NY 11797, Tel.: 516-576-2360; Fax: 516-576-2377; E-
mail: asa@aip.org, WWW: http://asa.aip.prg

1999

Joint meeting: 137th meeting of the Acoustical Society
of America/Forum Acusticum 199%\coustical Society
of America, 500 Sunnyside Bivd., Woodbury,
NY 11797, Tel.: 516-576-2360; Fax: 516-576-2377; E-
mail: asa@aip.org; WWW: asa.aip.grg

ASME Mechanics and Materials Conference, Blacks-
burg, VA [Mrs. Norma Guynn, Dept. of Engineering
Science and Mechanics, Virginia Tech, Blacksburg,
VA 24061-0219; Fax: 540-231-4574; E-mail:
nguynn@vt.edu;  WWW:  http://www.esm.vt.edu/
mmconf]. Deadline for receipt of abstracts: 15 January
1999.
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ACOUSTICAL NEWS—INTERNATIONAL

Walter G. Mayer
Physics Department, Georgetown University, Washington, DC 20057

Brazil to host the first Iberoamerican
Congress of Acoustics—April 1998

It was October 1995 when the Iberoamerican Federation of Acoustics
(FIA) was officially established, in Valdia in Chile, as a nonprofit scien-
tific federation. The bylaws of FIA were approved in 1996 in Buenos Aires
by member societies which today include the AsoCiadiel Aclstica Ar-
gentina(AdAA), the Sociedade Brasileira de Zstica(SOBRAQ, the So-
ciedad Chilena de Aatica (SCHA), the Sociedad Espafa de Acstica
(SEA), the Sociedad Peruana de Atiga, and the Sociedade Portuguesa de 17—19
Acustica.

This Congress will be organized by SOBRAC. It will be held 5-8
April 1998 in Floriangolis-SC-Brasil. The 18th meeting of SOBRAC will
be part of the Iberoamerican Congress, as will be the 1st Symposium o327
Metrology and Normalization in Acoustics and Vibrations. The official lan-
guages will be Portuguese, Spanish, and English. All events are scheduled #-2
take place in a seashore hotel where apartments and chalets have been
reserved for participants and their families. April 1998

The program includes contributed papers and invited lectures bys_g
speakers from South and North America, various European countries, and
Australia. In addition to the lecture program there will be four mini courses
(4 hours eachand four roundtable discussions. An exhibition of technologi- 27-30
cal instrumentation and materials will be open during the Congress.

Further information can be obtained from SOBRAC, Universidade
Federal de Santa Catarina, Departamento de EngenharianMachabora-

torio de Vibra®es e Acstica, Cx.P. 476-Floriammlis-SC-Brasil. Fax:+55 z/loaylizllg%
48 331 9677; e-mail: sobrac@gva.ufsc.br; Web: www.sobrac.ufsc.br -
. . 18-22
Papers published in JASJ (E)
25-27

A listing of Invited Papers and Regular Papers appearing in the latest
issue of the English language version of ffeurnal of the Acoustical Soci-
ety of JapanJASJE), was published for the first time in the January 199
issue of theJournal This listing is continued below.

The November issue of JA@), Vol. 18, No. 6(1997 contains the
following papers:

5 June 1998

9-12

Saleem Asghar and Tasawar Hayat “Acoustic diffraction near a penetrabl@0—28
strip”

T. Arai, K. Okazaki, S. Imatomi, and Y. Yoshida “Acoustical and percep-

tual cues of the palatalized articulation of /s/”

H. Suda, M. Ukigai, and Y. Miida “Sound reflection from a fine board array jyly 1998
of finite length in oblique incidence” 1-12

T. Sakuma and M. Yasuoka “Numerical vibro-acoustic analysis of sound

fields coupled with a baffled membrane”

S. lwamiya and Mingzhi Zhan “A comparison between Japanese and

Chinese adjectives which express auditory impressions”

T. Hasegawa, C. Matsuoka, N. Inoue, and T. Tizuka “A new theory of
Rayleigh radiation pressure”

7-9
14-16

14-16
International Meetings Calendar 14-18

Below are announcements of meetings to be held abroad. Entries pre-
ceded by arf are new or updated listings with contact addresses given in

parentheses. Month/year listings following other entries refer to issues of thggvig‘ber 1998

Journal which contain full calendar listings or meeting announcements.

20

February 1998 23-27
2-6 Ultrasonic Technological Processes—98Moscow. 30-4

6/97
March 1998 March 1999
4-5 4th Annual Conference of the Society of Acoustics of ~ 15-19

Singapore Singapore10/97
11-12 *1st Annual Conference of the German Audiological

637  J. Acoust. Soc. Am. 103 (2), February 1998

September 1998
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Society, Oldenburg, Germany. (B. Kollmeier,
Medizinische Physik, UniversitaOldenburg, 26111
Oldenburg, Germany; Fax:49 441 798 3698; e-mail:
biko@medi.physik.uni-oldenburg.pe

*Nordic Noise (Medical and biological effect9,
Stockholm, Sweden(Ms. G. Scholander, Otorhino-
laryngology Department, Karolinska Hospital, 171 76
Stockholm, Sweden; Fax+46 8 5177 6267; e-mail:
gschol@ent.ks.ge

*Spring Meeting Acoustical Society of JapanTokyo,
Japan.(Acoustical Society of Japan, lkeda-Building,
2-7-7, Yoyogi, Shibuya-ku, Tokyo 151 Japan; Fax:
+81 3 3379 145p

DAGA 98 (German Acoustical Society Meeting,
Zurich. 8/96

Acoustics 98 Cranfield University, UK10/97

*1st Iberoamerican Congress of Acoustics
Floriangolis-SC-Brazil(for contact address see notice
above

Waves in Two-phase Flows(EUROMECH Collo-
quium), Istanbul.12/97

6th Meeting of the European Society of Sonochem-
istry, Rostock-Warnermde. 10/97

7th Spring School on Acoustooptics and Applica-
tions, Gdarsk. 8/97

Noise and Planning 98 Naples.2/97

EAA/EEAA Symposium “Transport Noise and Vi-
bration,” Tallinn. 10/96

8th International Conference on Hand-Arm Vibra-
tion, Umea.6/97

Joint Meeting of the 16th International Congress on
Acoustics and 135th Meeting of the Acoustical Soci-
ety of America, Seattle6/97

NATO ASI “Computational Hearing,” Il Ciocco
(Tuscany. 12/97

Nordic Acoustical Meeting 98 Stockholm.10/97
Biot Conference on Poromechanics Louvain-la-
Neuve.10/97

ACUSTICA 98, Lisbon.10/97

35th International Conference on Ultrasonics and
Acoustic Emission Chateau of Tes’. 10/97

Inter-Noise 98 Christchurch4/96

Recreational Noise Queenstown10/97

ICBEN 98: Biological Effects of Noise Sydney.12/96
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638 J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998 Acoustical News—International 638



REPORTS OF RELATED MEETINGS

PSQ '97 on Cape Cod The value of physical metrics for SQ is clear: it is much more conve-
nient and less costly to process a signal and predict SQ directly than it is to
conduct jury studies. However, the predictive capacity of current metrics is
being questioned. In that event, is there a way to map directly from subjec-

PSQ '97, a meeting on Product Sound Quality, was held on Cape Codjve reaction to product design? Two different approaches—one used in the

Massachusetts in September. This two-day workshop, which had 18 preseautomotive industry, and another used for appliance studies were described

tations by 30 participants, was sponsored by the Acoustical Society oht pSQ '97. The former uses a genetic algorithm to lead in the search over

America and the Institute of Noise Control Engineering. The participantsihe physical parameter space to optimize for SQ. The latter uses jury testing

Were_from the appliance, alrcraﬂ, automotive, and telecommunications ing 4 analysis of variance and a “response surface method” to search for

dustries, and from consultation and academia. . preferred designs. But the metrics have not been discarded. Several present-

The goal of the workshop was to allow sound quali§Q practi- . . o

. ) ; . h ers gave examples of their successful use in specific cases.

tioners to exchange experiences and viewpoints about the rapidly develop- Was th ksh al fOP Particioant d

ing activities concerned with how products sound, and not merely with their ) _as € wor _S op successfar e\(en useful Par 'C'_pan,s expresse )

loudness or annoyandelthough those attributes are clearly importast unsolicited enthusiasm for the experience. The combination of bgautlful

great deal of discussion centered on the ability of physical measurements @y fall weather on Cape Cod, a casual atmosphere, productive interac-
general, and the value of certain algorithms or “metrics” in particular, to tions, and camaraderie made for a fruitful and enjoyable workshop. The
correlate with the subjective response to product sounds. opportunity to disclose various methods and approaches, to hear how others
A few of the participants had considerable experience with the foodhave made the tests and calculations, and to reflect on the strengths and
flavor, and aroma industries where the aesthetic values of odor, taste, amthortcomings of various programs was educational, with a lot of learning
texture are typically of concern. The correlation between subjective reinvolved. Will there be another PSQ 'XX? In '98, a special seminar on

sponses for these senses and physical measurements is highly problematigund quality will be sponsored by INCE in conjunction with Noise Con 98.

and the use of jury studies and experimental design has long been exploiteflerhaps there will be a PSQ '99.

In some cases, sound quality studies have also benefited by adapting the  Thjs reporter thanks the ASA and INCE for their assistance with

techniques pioneered in these industries. However, the link between targg;SQ

designs resulting from such studies and “recipes” or modifications is much,
less straightforward for product sound. This indicates an area where mo
work is needed. In fact, the pursuit of the ability to “listen to a design”
before it is built is currently being emphasized in the automotive industry. RICHARD H. LYON

'97, and is grateful to his fellow organizing committee members, Bob
rBernhard, Bennett Brooks, and Imdad Imam. A special thanks to George
E/Ialing of INCE for his assistance.
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REVIEWS OF ACOUSTICAL PATENTS

Daniel W. Martin
7349 Clough Pike, Cincinnati, Ohio 45244

The purpose of these acoustical patent reviews is to provide enough information for a Journal reader to
decide whether to seek more information from the patent itself. Any opinions expressed here are those of
reviewers as individuals and are not legal opinions. Printed copies of United States Patents may be
ordered at $3.00 each from the Commissioner of Patents and Trademarks, Washington, DC 20231.

Reviewers for this issue:

GEORGE L. AUGSPURGER, Perception Incorporated, Box 39536, Los Angeles, California 90039
RONALD B. COLEMAN, BBN Acoustic Technologies, 70 Fawcett Street, Cambridge, Massachusetts 02138
D. LLOYD RICE, 11222 Flatiron Drive, Lafayette, Colorado 80026

5,673,561 plug 16 and former8. The dome is supported at several discrete points by
insulating gasket4. This method of attachment is said to reduce suspended
43.35.Ud THERMOACOUSTIC REFRIGERATOR mass and improve the performance of the tweeter—GLA

William C. Moss, assignor to the University of California
7 October 1997(Class 62/6; filed 12 August 1996 5,639,996

_In this thermoacoustic refrigerator transduﬁeg sealed at one end of 43.38.Ja ASYMMETRICALLY RESONANCE TUNED
housingl to generate a quarter-wavelength standing wave within the hous-

ing by reflection from closed enfl. The standing wave is created within SPEAKER BOX
helium or other noble gas, passing through porous thermal std@posed

between perforated heat exchang2m@nd 3. The compression and decom- Yu-Wah Tan, Fremont, CA ]
pression of the gas moving within thermal stalcreates a temperature 17 June 1997(Class 181/199 filed 16 November 1995
gradient between the ends of the stack at the heat exchangers, with a higher  The panels that make up this loudspeaker box are built up to various
\ M .2 53 thicknesses in a nonsymmetrical manner so as to sound “less boxy."—GLA
)
s\ 2 : Al e
4 B 2 (' 5,659,155
; A

43.38.Ja ACOUSTICAL TRANSDUCER ENCLOSURE
temperature at exchang8rand a lower temperature at exchan@efor

refrigeration purposes. The porous stack material may be reticulated vitre-  Louis B. Porzilli, Sparta, NJ

ous carbon open-cell foam which is said to provide “a desirable ratio of 19 August 1997(Class 181/0.} filed 19 July 1995

thermoacoustic area to viscous area, which has a low resistance to flow, this is a simplified version of the inventor's earlier design in U.S.

which minimizes acoustic streaming and which has a high specific heat a”ﬂatent 5,327,985. A single loudspeaker can be located between two rectan-

low thermal conductivity...”.—DWM gular vents as shown, or a single vent can be located between two loud-
5602.930 speakers. In either case, the three-point projection geometry is supposed to
43.38.Ja LOUDSPEAKER 34
'
Roger N. Walton, assignor to Harman-Motive Limited K-;\
11 February 1997(Class 381/19%, filed in the United Kingdom 17 374 < ,\
July 1992 B - L4
The skirt of conductive domé3 is inductively coupled to voice-coil 36 s -39 —+1
12. High-frequency energy emanates from the horn formed between phasing — L~ 39
I
37 H
| L L 3a
1~
14 40’—%& /44
78 ]
I
I
J U
38—~
e -Hee e A 324
-
Cl4l
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concentrate frequencies below 90 Hz into a tight directional pattern “...pre- 5,633,993
viously thought impossible.” Assuming that the box is about 1.5 m high,

most loudspeaker designers wslill think it impossible.—GLA 43.38.Vk METHOD AND APPARATUS FOR
PROVIDING A VIRTUAL WORLD SOUND SYSTEM

William G. Redmann and Kerry M. Perkins, assignors to The
5,613,010 Walt Disney Company

27 May 1997(Class 395/11% filed 10 February 1993
43.38.Lc APPARATUS FOR REPRODUCING

The patent describes a well-designed method for delivering realistic
SOUND WITH A REDUCED DYNAMIC RANGE 3-D sound in virtual reality systems, yet encoding the audio information in

a reasonable number of channels. The apparatus employs a flexible resource
scheduling method that accurately localizes only a few key sounds while
less important sources are nonlocalized.—GLA

Lawrence F. Heyl and Steven E. Austin, assignors to Apple
Computer, Incorporated
18 March 1997 (Class 381/11Y, filed 30 March 1994

A Class D audio power amplifier is driven by two input signals. A 5,603,387
modulation signal represents the audio program. The second input is a ref-
erence signal. A relatively simple mapping function unit modifies the dy-43.40.Tm ACTIVE VEHICLE SUSPENSION SYSTEM
namic range of the first signal more or less, or not at all, according to
instructions from the user.—GLA Andrew M. Beard and Andreas H. von Flotow, assignors to
Applied Power, Incorporated
18 February 1997 (Class 180/89.1p, filed 6 September 1995

An active vehicle suspension system is described that is dynamically

5,652,642 soft, yet is stiff to quasi-static excitations. The mount is discussed in relation
to the isolation of chassis vibrations in tractors and trucks. Static stiffness is
43.38.Ne COMBINATION DIGITAL AND ANALOG provided by an air bag controlled through a pneumatic valve. Dynamic
SOUNDTRACK SYSTEM AND METHOD control forces are applied using a hydraulic actuator to minimize chassis
motion in the low-frequency rangérom 1-10 Hz. Passive vibration iso-
James A. Cashin, Tarzana, CA lation elements are included to provide additional attenuation at higher fre-
29 July 1997(Class 352/27; filed 13 March 1995 guencies. The mount design and control system are stated to provide broad-

band vibration attenuation, starting at below 1 Hz and extending into the

In this motion picture audio recording system, optical digital and ana- .
log audio-frequency signals both occupy the space traditionally reserved fotlhousands of Hertz, not only for bounce, but for pitch and roll movement as

the analog sound track. The trick is to record them in different colors ancl'"e"'_RBC
then add some digital processing to minimize interference between the two 5 626.332
signals. Additional refinements suppress hiss and errors caused by dirt on ’ ’

the sound track —GLA 43.40.Tm VIBRATION ISOLATION SYSTEM USING

PLURAL SIGNALS FOR CONTROL

5 646.990 Douglas J. Phillipset al, assignors to Harris Corporation
’ ’ 6 May 1997 (Class 267/140.1} filed 29 July 1994
43.38.Si EFFICIENT SPEAKERPHONE ANTI- A device to provide active isolation of base moti¥g from exciting
HOWLING SYSTEM top motionX+ is described. The top body is connected to the base through
a rod22 containing a compliant damping elemér& Accelerometers on the
Xu Li, assignor to Rockwell International Corporation upper and lower bodie€l6 and17) are used as feedback and feedforward
8 July 1997 (Class 379/39p filed 21 September 1995 sensors, respectively, to control a piezoceramic actddtwated in the load

Back-to-back, full duplex speakerphones have occasionally been used
in audio teleconferencing for many years. For successful full duplex opera-
tion, each station had to be set up in advance and carefully tweaked to 20
prevent howling and to minimize audible echo. Now that digitized comput-
erized audio is commonplace, one might expect that all of the problems

could be detected and corrected automatically in real time. The patent makes S }
it clear that this is no trivial task. What is described as a “cost effective” ; 16vﬂh_ sIG. ___J gfls
system would probably have been impossible to implement only a dozen ' COND. I et !

years ago. The patent document is short, easy to follow, and includes a lot of
useful information.—GLA

5,594,800

43.38.Vk SOUND REPRODUCTION SYSTEM
HAVING A MATRIX CONVERTER

Michael A. Gerzon, Oxford, United Kingdom :
14 January 1997(Class 381/12p filed in the United Kingdom 1751 sic. || rggl\::v%o B
15 February 1991 _y COND. oTL.

This is a long patent with lots of mathematics and 35 pages of illus-
trations. A hierarchical system of multi-channel encoding and decoding is
described which, among other benefits, allows for realistic stereophonic re- 20
production through a given number of loudspeakers, even if the original
recording was intended for a different number of loudspeakers.—GLA
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path. Multiple devices are used to control six degrees of freedom at connec- 5,609,230

tions between the top and base structures. The design of the device is said to

transmit forces primarily through the longitudinal axis. As such, the authorsq3 40.vVn VIBRATION CANCELLING DEVICE
contend that cross coupling between mounts does not need to be addressed

in the controller.—RBC Malcolm A. Swinbanks, assignor to MAS Research Limited

11 March 1997 (Class 188/26Y. filed in the United Kingdom 10

June 1993
5,592,791 This is an interesting patent about a magnetically levitated reaction-
mass shaker. A hollow steel sphere is located in the spherical space interior
43.40.Vn ACTIVE CONTROLLER FOR THE of an outer shell secured to a structure to be controlled. Magnets on the inner
ATTENUATION OF MECHANICAL VIBRATIONS sphere and outer shell are used to levitate and orient the steel sphere mag-

netically inside the shell. When the structure vibrates, proximity sensors
Radix Systems, Incorporated detect changes in the proximity of the sphgre. These sensor-responses are

14 January 1997(Class 244/1N; filed 24 May 1995 used as feedback sensors to cau;e magnetic forces.to bg applied between the

) ) ] o o ) sphere and sheli.e., structurg which oppose local vibration of the struc-
‘ A method is described for controlling building vibrations using an ture while restoring the sphere toward its rest position.—RBC
active control system. The approach uses an array of reference sensors to
sense incoming earthquake vibration. Reaction-mass actuators are used to
impart control forces to the upper floor and supports of the building struc-
ture. The residual vibration is sensed using arrays of sensors located on
orthogonal sides of the building to monitor the first three vibrational modes.
Controller complexity is reduced by sensing and controlling orthogonal re-
sponses independently. The control algorithm is the Block Underdetermined
CovariancgBUC) algorithm developed by Slock, which is a modified block
least squares method. The convergence properties of this algorithm af3.40.Vn ADAPTIVE RESONATOR VIBRATION
stated to be relatively insensitive to the condition number of the referenc€C ONTROL SYSTEM
input correlation matrix, and therefore are well suited to this application.—
RBC Andrew J. Langley, assignor to Noise Cancellation Technologies,
Incorporated
15 April 1997 (Class 364/508 PCT filed 15 April 1992

Camille M. D’Annunzio and Charles E. Chassaing, assignors to

5,621,656

5,595,372 An active control system is described for modifying the apparent input
impedance of tuned dynamic absorbers mounted on a structure so as to
43.40.Vn SEMI-ACTIVE VIBRATION MITIGATION adjust the resonance frequency of the resonator. Sensors on the structure and
ASSEMBLY dynamic mass of the absorber, together with a tonal reference signal, are
inputs to a controller. The controller modifies the properties of the absorber
William N. Patten, assignor to University of Oklahoma (e.g., changes the apparent stifffess that its resonance frequency tracks
21 January 1997(Class 267/64.1p filed 7 June 1995 the frequency of the tonal disturbance. The patent states that multiple adap-
An approach for suppressing structural vibrations of bridges and build4ive resonators can be used to effectively damp vibrations from disturbances
ings using a semi-active vibration damping assembly is described. The agontaining excitation at multiple tonal frequencies.—RBC
sembly includes a double-rod hydraulic cylinder connected to a structure.
The relative motion between the attachment points and the pressure differ-
ential in the fluid chambers of the hydraulic cylinder are measured to control
the fluid flow between chambers. The assembly can be used to dissipate as
well as store elastic energy. To take advantage of dissipative and energy
storage capabilitiesi.e., nondissipativeeffects of the hydraulic fluid, the

patent states that utilizing hydraulic fluid having entrained air is beneficial 5,515,444
for enhancing stability of the semi-active control algorithms that are
presented.—RBC 43.50.Ki ACTIVE CONTROL OF AIRCRAFT ENGINE

INLET NOISE USING COMPACT SOUND
SOURCES AND DISTRIBUTED ERROR SENSORS

5,596,931
Ricardo Burdisso et al, assignors to Virginia Tech Intellectual
43.40.Vn DEVICE AND METHOD FOR DAMPING Properties
MECHANICAL VIBRATIONS OF A PRINTING 7 May 1996 (Class 381/7}; filed 7 October 1994
PRESS An active control scheme to reduce noise radiated from the inlet of a

. turbofan engine is discussed. Experimental results using a multiple-input—
Georg Rassler and Bernhard Wagensommer, assignors to  myitiple-output(MIMO) controller suggest that tonals associated with fan
Heidelberger Druckmaschinen AG blade passagéBP) frequencies and high-pressure compressor BP funda-
Zié];;uary 1997(Class 101/48% filed in Germany 16 October mental can be significantly reduced using a filter-x least-mean-s¢uisli®)
control algorithm. The test configuration uses tachometer reference sensors,
A device is described for damping asynchronous mechanical vibrazcoustic horns, and loudspeakers to generate the control pressures, and a

tions of a printing press to reduce ghosting and improve printing quality'Iarge area polyvinyldi-fluoridéPVDF) microphone to measure the residual
Vibration sensors mounted to the press are processed to extract the asyn-

S ﬁ?und pressure. Sets of disturbance rods were installed in the engine to
chronous vibration responses. These responses are used to modulate the - . ; ;
electrical signals input to the drive motors. These modulations produce Conqenerate plgne wave and spinning modes similar to those found in uItra-h|gh
trol torques which oppose the asynchronous vibrations. The net effect is safdyPass engines. A concept for a compact sound source capable of being
to be the damping of the asynchronous vibrations. Several configurations af#ish mounted to the inside of the inlet duct is presented. In addition, an
discussed including the use of multiple sensors and motors, as well as agpproach for locating distributed error sensors along the leading edge of the
tuators operating directly on the drive train.—RBC inlet is discussed.—RBC
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5,577,127

43.50.Ki SYSTEM FOR RAPID CONVERGENCE OF
AN ADAPTIVE FILTER IN THE GENERATION

OF A TIME VARIANT SIGNAL FOR CANCELLATION
OF A PRIMARY SIGNAL

cies from the first, is included to extend the frequency range of control. As
pointed out by the author, finding space for such extra sets of panels/
resonators can be a problem in certain noise control applications such as in
aircraft engines.—RBC

5,600,106

43.50.Ki ACTIVELY SOUND REDUCED MUFFLER
HAVING A VENTURI EFFECT CONFIGURATION

Michiel W. R. M. Van Overbeek, assignor to Nederlandse
Organisatie Voor Toegepast-Natuurwetenschappelijk
Onderzoek Tno

19 November 1996Class 381/7Y; filed in Netherlands 19 Novem-
ber 1993

Andrew J. Langley, assignor to Noise Cancellation Technologies,

Incorporated

Rapidly changing signals tend to confuse active noise-reduction sys- 4 February 1997 (Class 181/20 filed 15 May 1996

tems because adaptive digital filters converge at their own unhurried pace.  This patent describes an active muffler system designed to minimize
“Means are provided for updating the filter coefficients with the aid of the the acoustic mass between the loudspeaker and the error microphone, and to
so-called ‘projection algorithm’...and for generating the reference signal inminimize the ingestion of hot exhaust gases into the loudspeaker enclosure.
such a way that an input correlation matrix...has an eigenvalue distributiohe acoustic mass is kept small by mounting the loudspeaker enci@$ure
which has a value substantially equal to one after as few steps adirectly to the muffler pipe21l. A smooth Venturi22 is used to generate

possible.”—GLA

~ 24 GR**@\. 29

ZR MIC
23 -
[ 26 27

]

5,584,447

43.50.Ki NOISE CONTROL USING A PLATE
RADIATOR AND AN ACOUSTIC RESONATOR

COOLING __f SH [ g —
) . : 2l FLOW —=
Frederic G. Pla, assignor to General Electric Company [ CriLTer _
17 December 1998 Class 244/1N; filed 19 December 1994 o L OW PRESSURE it
This patent describes a method for using active control to reduce dis- (\ ——— REGION 7 28
crete tonal noise produced by aircraft engines. The method uses the equive J -

lent of Helmholtz resonators imbedded in the nacelle wall. In each cavity, ez

piezoceramic actuators are mounted on bendable plates to create controllggtally in the exhaust pipe a region that is below atmospheric pressure. A
volume velocities within each cavity. By tuning the plate and cavity reso-bleed pipe26 in the front cavity of the loudspeaker enclosure permits air
nances to coincide, the author states that loud canceling noise can be geffom outside to flow toward the low-pressure region, thereby reducing in-
erated to control tonal noise sources in the engine. Methods are presentgéstion of exhaust gases into the loudspeaker enclosure, and also providing
for tuning the resonance frequency of the Helmholtz cavities using quasieooling. This patent is a division of U.S. Patent No. 5,550,§84viously

static control of the cross-sectional area and length of the inlet(dactthe reviewed.—RBC

acoustic mags—RBC

5,602,928

43.50.Ki MULTI-CHANNEL COMMUNICATION
SYSTEM

5,588,800

43.50.Ki BLADE VORTEX INTERACTION NOISE
REDUCTION TECHNIQUES FOR A ROTORCRAFT
Larry J. Eriksson and Cary D. Bremigan, assignors to Digisonix,
Bruce D. Charles et al, Incorporated

Helicopter Company 11 February 1997 (Class 381/7); filed on 5 January 1995

31 December 1996Class 416/2%; filed on 31 May 1994 . L . .
A multi-channel communication system is discussed for reducing

An active control device is described for reducing blade-vortex inter-nojse at passenger locations in a vehicle, while preserving the speech be-
action (BVI) noise generated by a rotorcraft, such as a helicopter. Trailingtween passengers. Reference sensors that are well correlated with noise
edge flaps located near the tip of each of the rotorcraft's rotor blades argourcege.g., engine noise, road noise, ptare used within the context of an
controlled to follow a predetermined deflection schedule during each rotaadaptive recursive least-mean-squaRiMS) algorithm to minimize the
tion of the blade. Through careful deflection and retraction of the flaps, thesontribution of these noise sources in the responses of microphones located
authors state that blade tip vortices, which are the primary source for BVin close proximity to each passenger. The residual microphone signals at the
noise, arga) made weaker antb) pushed farther away from the rotor disk. passenger locations are assumed to carry only the speech from the local
Both of these effects will reduce BVI noise according to the authors. Apassenger. These signals are used then as inputs to loudspeakers to enhance
tradeoff is noted for this approach between maximizing noise reduction angeception of speech from one passenger to another.—RBC
increasing dradi.e., reducing efficiency of the rotor bladeshen the flaps
are deflected.—RBC

assignors to McDonnell Douglas

5,602,929

43.50.Ki FAST ADAPTING CONTROL SYSTEM AND
METHOD

5,590,849

43.50.Ki ACTIVE NOISE CONTROL USING AN
ARRAY OF PLATE RADIATORS AND AN ACOUSTIC
RESONATOR

Steven R. Popovich, assignor to Digisonix, Incorporated
11 February 1997(Class 381/7); filed on 30 January 1995

. . . This patent describes an adaptive filter structure that provides for faster
Frederic G. Pla, assignor to Ger)eral Electric Company convergence than filtered-X or filtered-U least-mean-squérhtS) algo-
7 January 1997(Class 244/11; filed on 19 December 1994 rithms for transfer functions between actuators and residual sensors having
This patent represents a slight extension of the concept contained ipropagation delays. The system includes an additional digital filter to re-
patent 5,584,447 reviewed above. This patent differs from the prior patent imove the effect of the control signal to the actuator in the electrical signal
that a second layer of activated cavities, with different resonance frequerfrom the residual sensor. This modified residual signal, which represents an
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estimate of the open-loop residual response, is used for adapting the coeffi- 5,619,581

cients of the control filter relating the reference signals to the output control

signal. A similar approach is described for a feedback implementation. II43.50.Ki ACTIVE NOISE AND VIBRATION
both cases, the approach described is basically the well-known Youla "antANCELLATION SYSTEM

formation to recover the open-loop residual response, after which an assort-
ment of LMS-based algorithms can be used to adapt control filter

Matthew K. Ferguson et al., assignors to Lord Corporation
coefficients.—RBC 9 g p

8 April 1997 (Class 381/7); filed 18 May 1994

This patent relates to alternative hardware configurations for imple-
menting adaptive feedforward controllers. In-line control filtering is per-

5,606,622 formed using analog circuitrgi.e., waveform generators, phase-lock loops,
switch-capacitor filters, etcor field-programmable gate arrays instead of
43.50.Ki ACTIVE NOISE CONTROL IN A DUCT digitally using digital signal processof®SP3. The coefficient adaptation is
WITH HIGHLY TURBULENT AIRFLOW performed using DSP's. By off-loading the in-line filtering from the DSPs,
fewer DSPs are required, which according to this patent reduces cost, board
Terry N. Christenson, assignor to The Boeing Company area, power requirements, and component costs of the overall controller.—
25 February 1997(Class 381/7); filed 29 September 1994 RBC

This patent discusses an approach for using active control to attenuate
sound wave propagation inside a duct with turbulent flow. The interaction of
the turbulent flow with the reference and residual microphones typically 5,675,658
results in low coherence between the microphone responses, and, conse- .
quently, limits achievable performance of an active system. The propose 3.50.Ki ACTIVE NOISE REDUCTION HEADSET
method uses turbulent airflow control devides., performated plates,wire . o .
screens, honeycomb material, or combination thereoémooth the turbu- Thomas Paige Brittain, Amarillo, TX
lent air flow reaching the reference and residual microphones. In addition, 7 October 1997(Class 381/7%, filed 27 July 1995
aerodynamically designed microphones are also used to reduce the amount  An earphonel6 of this headset contains microphc22connected to a
of noise created by the interaction of the airflow with the microphones.signal processing uni4 that produces for reproduction by noise reduction
These aspects of the design improve the coherence between the micrgansduce®0 a sound canceling the ambient noise in the earcup picked up
phones. The associated pressure drop is briefly discussed.—RBC

5,617,479
43.50.Ki GLOBAL QUIETING SYSTEM FOR / >
STATIONARY INDUCTION APPARATUS ,/

Stephen Hildebrand and Zigiang Hu, assignors to Noise | 10
Cancellation Technologies, Incorporated \ ‘

1 April 1997 (Class 381/7}; filed 12 December 1995 \

An active control system to control sound radiation from power trans-
formers and shunt reactors is described. The system uses piezoceramic ac-
tuators mounted directly to the transformer tank, as well as on separately
supported plates, to control the local pressure field around the tank at 120
and 240 Hz. Actuator and sensor placements are determined based on spatial
maps of the tank vibration and acoustic intensity. A multichannel filter-X
least-mean-squargsd MS) algorithm is used to minimize microphone re-
sponse by filtering a line-voltage reference signal through adaptive filters to
drive the piezoceramic actuators. The authors state that significant reduc-
tions in sound pressure levels at a distance of 10 m were obtained with the
active system in operation.—RBC

5,618,010

43.50.Ki ACTIVE NOISE CONTROL USING A
TUNABLE PLATE RADIATOR

Frederic G. Pla and Harindra Rajiyah, assignors to General /)
Electric Company IR
8 April 1997 (Class 244/1N; filed 19 December 1994 /) ‘\\

This patent represents a slight extension of the concepts contained in
patents 5,584,447 and 5,590,849 reviewed above. The approach uses the
equivalent of Helmholtz resonators imbedded in the nacelle wall of an air-

craft engine. In each cavity, piezoceramic actuators are mounted on bend- N 14
able plates to create controlled volume velocities within each cavity. By N - .
tuning the plate and cavity resonances to coincide, the authors state that loud = = | .

cancelling noise can be generated to control tonal noise sources in the en-
gine. This patent differs from the prior patents in that the resonance frequen-
cies of the activated plates are tuned by controlling the static pressure on th®y the microphone. A second transduds receives the communication
back side of the plate, or by mechanically changing the volume of thesignals desired for reproduction through cav&§ to the wearer's ear.—
backing cavity.—RBC DWM
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5,669,189 5,664,577

43.55.Vj ANTISEISMIC CONNECTOR OF LIMITED 43.66.Yw METHOD AND APPARATUS FOR
VIBRATION FOR SEISMIC ISOLATION OF A DISTORTION PRODUCT EMISSION TESTING OF
STRUCTURE HEARING
loannis Logiadis et al, Athens, Greece Brenda L. Lonsbury-Martin and Glen K. Martin, assignors to
23 September 1997 Class 52/167.% filed in Greece 24 December Baylor College of Medicine
1992 9 September 1997 Class 128/74% originally filed 25 January 1990
The antiseismic connectd0 between the superstructure of a building This is a method and apparatus for recording distortion product emis-

and its foundation is intended to allow a limited amount of relative motion sions(DPE9 of human ears, especially for recording DPE audiograms. Two

laterally during an earthquake while restoring the relative position of strucpure tonesf, and f, are simultaneously presented to the ear canal from

ture and foundation at the completion of the vibration. The weight of theseparate transducers through tubes leading to a foam eartip placed in the ear
canal. A miniature microphone in the eartip picks up otoacoustic emission
tones(in addition to the input tongswhich are supplied to a frequency
spectrum analyzer. By controlling andf, in a constant ratio and selecting

20 2 f,—f, for isolation it is possible to create a DPE audiogram and a DPE
input/output function as bases for an objective hearing test, both for normal
and hearing impaired ears. Use of two microphones provides reduction of
body noise. Much of the text of the patent is an Appendix describing the
associated computer program.—DWM

5,662,477

43.70.Hs DEMONSTRATIVE PUPPET FOR

structure is transmitted from iron platethrough sliding bearing, which is PHONETIC TRAINING OF PERSONS HAVING

a stack of parallel plates, to steel pl@teesting upon the foundation. Cables SPEECH AND/OR HEARING DISORDERS

6 within hollow casings5 are under tension between cup-shaped termina-

tions in the structure and in the foundation. The antiseismic connector “con-  janet A. Miles, Caza, CA

nects the superstructure to the foundation through prestressed tendons from 2 september 1997Class 434/185; filed 17 July 1995

special material which not only permit the relative movement of the foun- . . .
dation to the superstructure but also create horizontal recentering forces and 1S patent shows the design and use of a puppet for demonstrating the
receive tensile forces that may be encountered at the isolation system due R&eferred positioning of the jaws, tongue, and incisor teeth for making a

overturning moments of the superstructure, thus creating a safe seismic isyfiety of audible phonetic sounds, especially in the training of people who
lation of the structure.”—DWM have speech or hearing disorders. For training children the puppet head

resembles that of a dog. The opening of the mouth and the position of the
tongue relative to the lips and teeth are controlled by the hands of the puppet
operator who is a qualified speech pathologist—DWM

5,631,678

43.58.Ls ACOUSTIC PRINTHEADS WITH OPTICAL

ALIGNMENT 5,634,086

43.71.Hw METHOD AND APPARATUS FOR VOICE-
INTERACTIVE LANGUAGE INSTRUCTION

Babur B. Hadimioglu and Martin Lim, assignors to Xerox
Corporation

20 May 1997(Class 347/4%; filed 5 December 1994 e . . .
Dimitry Rtischev et al, assignors to SRI International

The acoustic printhead of this patent has an optically transparent sub- 27 May 1997(Class 395/2.79 filed 12 March 1993
strate with at least two optical lenses that may be part of the substrate which
also is part of an acoustic droplet ejector having an acoustic lens that i
fabricated on the optically transparent substrate.—DWM

By constraining the syntax to the set of utterances included in a foreign
Fanguage lesson, this hidden Markov model-based phonetic recognition sys-
tem is able to tolerate a wide variety of word articulations and to provide
feedback to the user on the accuracy of pronunciation. Three or more levels
of error tolerance allow detection of mispronunciations while reading a
5,629,985 script, wrong answers or pronunciations during a question/answer interac-
tion and utterance endpoint detection in a conversational mode.—DLR

43.66.Qp APPARATUS AND METHODS FOR
AUDITORY CONDITIONING

- . 5,644,678
Billie M. Thompson, Phoenix, AZ
13 May 1997(Class 381/68.% filed 23 September 1994 43.72.Ar METHOD OF ESTIMATING VOICE PITCH
The methods and apparatus of this patent are intended for the analysBY ROTATING TWO DIMENSIONAL TIME-
of listening disorders, and for conditioning the listeners to changes that W”'ENERGY REGION ON SPEECH ACOUSTIC SIGNAL

enhance their listening capability. The apparatus contains a variety of sign?

sources including a microphone, recorded sounds, white and pink nois ,LOT
computer generation; various high-pass and low-pass filters, with conven-
tional bass and treble tone color circuits; and transducers for both air and
bone conduction to each ear. The variety of speech, hearing, and neurologi-

Benedetto Giuseppe Di Ronza, assignor to Alcatel N. V.
1 July 1997 (Class 395/2.1§ filed in Italy 3 February 1993

cal (e.g., dyslexiadisorders to which the system may be applicable is indi- This pitch period detection system is based on a simple calculation of
cated by the listing of 34 different “objects of the invention.” Examples of certain distances on a time plot of the speech waveform. The measures
assessment and training procedures are included.—DWM computed may be given a geometric interpretation corresponding to a circle
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speech duration. A method of summing the sample differences across re-
gions of block fade in/out is then used to determine how the blocks should
be aligned in order to reconstruct the output speech signal.—DLR

m)‘ ’ Q /
VAV

5,644,679
of fixed radius rolling along the tops of the waveform peaks. A pitch period
is assigned based on which peaks are touched by the circle as it rol43.72.Gy METHOD AND DEVICE FOR

along.—DLR PREPROCESSING AN ACOUSTIC SIGNAL
UPSTREAM OF A SPEECH CODER

Sophie Scott and William Navarro, assignors to Matra

5,651,094
Communication

43.72.Ar ACOUSTIC CATEGORY MEAN VALUE 1 July 1997 (Class 395/2.33 filed in France 3 June 1994
CALCULATING APPARATUS AND ADAPTATION . . . . -
Low bitrate speech coding techniques are typically optimized for best

APPARATUS performance when the input signal is band limited to the “toll quality”
) ) ) ) ) ) telephone band. This system places a bandpass filter in front of such a coder
Keizaburo Takagi and Hiroaki Hattori, assignors to NEC  \yhen it is to be used with a microphone, or other input not limited to the
Corporation o telephone bandwidth, such as is often the case for speakerphones.—DLR

22 July 1997(Class 395/2.58 filed in Japan 7 June 1994
This patent covers a component of a speech recognition system con-

cerned with classification of analysis vectors into phonetic clusters. A dy-

namic time warping calculation locates matches between input vectors and

stored reference vectors. At that point, a weighted running average in each 5,649,051

phonetic class is updated with the new input vector. The weight for each

class is then also updated by the degree of fit found by the match.—DLR 43.72.Gy CONSTANT DATA RATE SPEECH
ENCODER FOR LIMITED BANDWIDTH PATH

5,647,006 Joseph Harvey Rothweileret al, Ellicott City, MD

43.72.Dv MOBILE RADIO TERMINAL COMPRISING 15 July 1997(Class 395/2.3, filed 1 June 1995
A SPEECH This speech coder could perhaps be called a Line Spectral Frequencies
(LSF) vocoder. The transmitted spectral values are not the LSF coefficients
Rainer Martin, assignor to U.S. Philips Corporation themselves but, rathe_r, one of four codes resulting from concgrrent (;ode—
8 July 1997 (Class 381/68; filed in Germany 22 June 1994 book ;earche; spanning one, two, thrg.e, or four frames of the input signal.
i ] ) o The pitch estimate includes a one-bit jitter flag, which governs a random-
This speech processor, intended for vehicular applications, operates gfation of the fundamental frequency in the receiver. Before transmission,

the signals from two or more microphones and results in a speech outpytames are compressed using a differential coding method.—DLR
signal having a better signal-to-noise ratio than any of the input signals. It

uses a type of beamforming in which the inputs are individually delayed

based on their Hilbert transforms. A gradient smoothing arrangement pro-
vides a means of estimating the delays to fractions of a sample interval.—
DLR

5,649,058
5 647.005 43.72.Ja SPEECH SYNTHESIZING METHOD
' ' ACHIEVED BY THE SEGMENTATION OF THE
43.72.Ew PITCH AND RATE MODIFICATIONS OF LINEAR FORMANT TRANSITION REGION
AUDIO SIGNALS UTILIZING DIFFERENTIAL v K L ] Gold Star C
oon-Keun Lee, assignor to Gold Star Company
MEAN ABSOLUTE ERROR 15 July 1997(Class 395/2.7Y, filed in Republic of Korea 31 March
Yen-Hui Wang and Der-Chwan Wu, assignors to Electronics 1990
Research & Service Organization This speech synthesizer uses a formant coding technique to reduce the
8 July 1997 (Class 381/6%, filed 23 June 1995 memory space required to store spectral vector sequences representing the

This speech pitch or rate modification system divides the incomingSpeeCh phonetic units. The formant trajectory encoding method is geared

speech signal into blocks, adjusts the sample rate to achieve the desired

pitch, and then deletes or duplicates blocks as required for the desired }
FREQUENCY |

i | 8 . | 4th FORMANT
[
N 7 N

2 ) " |—~Ccross | N 3rd FORMANT
%ﬂ/ % 1 FADING |
. (T )
| # | Uittt | 2nd FORMANT
i i | ! A‘]/y‘ 15t FORMANT

| i
NN, |
36 A
to V=2 A T N B B T L2 L3 TIME

1t 2 3 4 5 86 7 8 9 o - o .
primarily toward the efficient representation of linear transitions of the for-

mant frequencies.—DLR
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5,651,095 approach, the word list is first grouped by a simple rule such as first letter or
length. An iterative “reclustering” process then compares each item to the

43.72.Ja SPEECH SYNTHESIS USING WORD cluster centers of the previous iteration. The procedure description is fairly
PARSER WITH KNOWLEDGE BASE _broad, such that the use of phonetic or linguistic clustering rules may be
HAVING DICTIONARY OF MORPHEMES WITH included.—DLR

BINDING PROPERTIES AND COMBINING RULES

TO IDENTIFY INPUT WORD CLASS 5,640,490

Richard Ogden, assignor to British Telecommunications

22 July 1997 (Class 395/2.6% filed in European Patent Office 4 43.72.Ne USER INDEPENDENT REAL-TIME
October 1993 SPEECH RECOGNITION SYSTEM AND METHOD
This speech synthesis component parses words from the text input and

checks a word class dictionary for each input word. If found, the dictionary
entry includes morpheme structure and phonological information pertaining

C. Hal Hansenet al,, assignors to Fonix Corporation
17 June 1997(Class 395/263% filed 14 November 1994

This patent is a study in excesses; it includes over 300 literature ref-
SYLLABLE erences, 40 pages of electronic circuit diagrams, and over 300 pages of C
source code. The speech recognizer described consists of a large number of
fairly typical speech processing elements, filter bank, zero crossings, FFT,
peak search pitch period analysis, and harmonic amplitude formant analysis,
to name a few.—DLR

5,644,680

to morpheme bindings. A syllable parser provides additional phonological43 72.Ne UPDATING MARKOV MODELS BASED
and stress structure information for synthesis parameter generation.—DLI%) U
N SPEECH INPUT AND ADDITIONAL
INFORMATION FOR AUTOMATED TELEPHONE

5,649,055 DIRECTORY ASSISTANCE
43.72.Kb VOICE ACTIVITY DETECTOR FOR Gregory J. Bielby et al, assignors to Northern Telecom Limited
SPEECH SIGNALS IN VARIABLE BACKGROUND 1 July 1997 (Class 395/2.4% filed 25 May 1995

NOISE The patent discloses the use of a speech recognizer in a telephone

. . directory search application. In use, the callers may speak a variety of items
Prabhat K. Gupta et al, assignors to Hughes Electronics related to the desired number, such as city names, street names, and business
15 July 1997(Class 395/2.4F, filed 26 March 1993 names. Once correct recognition has been confirmed, the acoustic features
This voice presence detector is presented in the context of a CELRor the spoken items are stored in association with the recovered phone

vocoder, but is not specific to that application. It operates on time domaimumber. This information may be used in future searches or in further train-

measures of the incoming signal, comparing these measures to adjustabifg passes of the recognizer system.—DLR.

thresholds for better amplitude independence. Measures include low-pass

filtered versions of the PCM and mu-law waveforms and slope and zero-

crossing counts of these low-pass signals.—DLR
5,649,056

5,640,485 43.72.Ne SPEECH RECOGNITION SYSTEM AND

METHOD WHICH PERMITS A SPEAKER'S
oo SPEECH RECOGNITION METHOD AND UTTERANCE TO BE RECOGNIZED USING A

HIDDEN MARKOV MODEL WITH SUBSEQUENT

Jukka Tapio Ranta, assignor to Nokia Mobile Phones Limited CALCULATION REDUCTION
17 June 1997(Class 395/2.5; filed in Finland 5 June 1992

. . . Tsuneo Nitta, assignor to Kabushiki Kaisha Toshiba
It_|s quite common for current speech r_ecog_nltlon systems to select 15 July 1997 (Class 395/2.6§ filed in Japan 22 March 1991
dynamically a syntax based on the current situation, or even to construct
such a syntax based on current information pertaining to the interaction. The ~ The patent describes a hidden Markov mo@l¢MM)-based speech
system described here goes a step farther, adjusting the probabilities of tfiécognizer with a novel matrix quantizer to determine the phonetic segment
occurences of particular words when a recognition error has occurred.—Units. Matrices formed by adjacent frames of mel cepstral linear prediction
DLR vectors are used to search a codebook of such matrices. This is, of course,

vector $ph = (Sr, Sm,---Ss}

5,640,488

43.72.Ne SYSTEM AND METHOD FOR
CONSTRUCTING CLUSTERED DICTIONARY FOR
SPEECH AND TEXT RECOGNITION

SRl SRa2 Snro

Jean-claude Junqua and Craig Demel, assignors to Panasonic
Technologies, Incorporated vector S~ (Spa, Spaz,---Ssot!

17 June 1997(Class 395/2.54 filed 5 May 1995 just a way of computing clusters of frames sequences, resulting in phonetic

The patent describes a way of organizing a speech processing dicticegment classes. Various applications use vector or matrix quantization or a
nary into clusters of similar items for faster lookup accesses. The usuaheural network for the clustering process. All versions use HMM classifiers
clustering methods involve exhaustive cross-comparisons of items. In thigo convert phonetic sequences to words.—DLR
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5,649,057
receives a pulse from the lips Afl, and the signal is converted to digital for
43.72.Ne SPEECH RECOGNITION EMPLOYING delay line13, then converted back to analog to drive transdudmwhich
KEY WORD MODELING AND NON-KEY transmits the pulse into the flared tube. In turn the wave reflectedB®im
WORD MODELING picked up by microphon&7, passed through delay lirg0 to transducel9
to create a return wave to the mouthpiece. Changes in delay time change the
Chin-Hui Lee etal, assignors to Lucent Technologies, frequency of the musical tone. The sound absorbers at the ends of the tubes
Incorporated are intended to be totally nonreflective, as if connected to an infinite length

15 July 1997(Class 395/2.6% originally filed 17 May 1989 of pipe. Since this is difficult to approximate practically, the patent proposes

. . . . active means for achieving nonreflection using transdu2érand 35.—
This telephone-based continuous speech recognizer uses hidden M WM 9 9

kov modeling of a relatively small key word vocabulary together with ad-
ditional HMMs for silence, nonspeech events, and extraneous words not

T 14000

5,656,789

IANLUTINY

43.75.St ELECTRONIC MUSICAL INSTRUMENT
2000 HAVING A FUNCTION TO INDICATE KEYS TO BE
50 OPERATED

H I 1 z
2 i 2
5 E E ; Akira Nakada et al, assignors to Yamaha Corporation
J i ! E 12 August 1997(Class 84/477 R, filed in Japan 15 April 1994
+ 1l @
TYPE | COLLECT—1—FROM ' ToM v SILENCE ] This electronic musical instrument provides indicat@sy., illumina-
TYPE 2 }— COLLECT -:r \ g torg) for its individual keyboard keys which assist in the training of key-
TYPE3 7 T —] . & board players by showing which keys are to be played either simultaneously
) 13 or in sequence, depending upon the stored musical information and the
NON-VOCABULARY  RANDOM TIME (sec) timing of its presentation. “Individual notes of a musical phrase may be

sequentially indicated quickly in advance of the actual phrase
included in the key word set. Mel cepstral LP vectors and their time derivaerformance.”—DWM
tives are used directly as the inputs for searching the HMM space. A gram-
mar of the allowable sequences allows non-key word sequences to be inter-
spersed freely among the key words in finding the best matching pathway
through the HMMs.—DLR

5,668,340

43.75.Fg WIND INSTRUMENTS WITH ELECTRONIC
TUBING LENGTH CONTROL

5,559,298

43.75.Tv WAVEFORM READ-OUT SYSTEM FOR AN
ELECTRONIC MUSICAL INSTRUMENT
Hikaru Hashizume and Yutaka Washiyama, assignors to

Kabushiki Kaisha Kawai Gakki Seiji Okamoto, assignor to Kabushiki Kaisha Kawai Gakki
16 September 1997(Class 84/74%, filed in Japan 22 November 24 September 1998Class 84/607; filed in Japan 13 October 1993
1993

“An electronic musical instrument produces musical tones based on
This electronic control system for wind instruments is intended towaveform data, while providing smooth changes between different timbres
substitute for the standing wave system in instrument tubing on which conand at the same time avoiding reduction in the efficiency of waveform
ventional wind instruments operate. The example shown here is for brassompression. The timbre change is carried out in an interpolation interval,
wind instruments, but other examples are for reed instruments and flutes. lhe magnitude of which varies in accordance with the magnitude of the
place of one continuous air column, this instrument uses a straight pip§mpre change. The data necessary to establish the interpolation interval may

segment of uniform diameter with a mouthpie&# and a sound absorber  pe stored and read out of a memory or may be determined by interpolation
A3, separated acoustically from a second flared segment with a sound ag‘ccording to a linear function.”—DWM
sorberB1 at one end and the instrument bBB at the other. Microphon&0

FoHEE 5,597,970
31 3

2% 272
S YR i 43.75.Tv WAVEFORM PROCESSING APPARATUS

AND AN ELECTRONIC MUSICAL INSTRUMENT
USING THE OUTPUT WAVEFORM THEREOF

Hiroshi Sato and Kaoru Matsunaga, assignors to Kabushiki
Kaisha Kawai Gakki
28 January 1997(Class 84/60%; filed in Japan 28 October 1993

In an electronic musical instrument of the waveform processing type
the apparatus of this patent avoids sudden changes in tone spectrum by
dividing the original sound signal into bands or ranges and effecting the
necessary changes in each band gradually.—DWM
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5,496,962 ‘questions.’ Each solution is then scored based upon how each question is
‘answered’ or how much that particular solution fits the parameters of the

43.75.Wx SYSTEM FOR REAL-TIME MUSIC question.”—DWM
COMPOSITION AND SYNTHESIS 5,668,338
Sidney K. Meier, Hunt Valley, MD and Jeffrey L. Briggs,  43.75.WX WAVETABLE AUDIO SYNTHESIZER
Freeland, MD WITH LOW FREQUENCY OSCILLATORS
5 March 1996 (Class 84/60}; filed 31 May 1994 FOR TREMOLO AND VIBRATO EFFECTS
This is a computerized system “for automatically generating musical

> ) S Larry D. Hewitt et al, assignors to Advanced Micro Devices,
compositions on demand one after another without duplication. The system Incorporated

can produce such compositions upon demand in a variety of genres and 16 September 1997Class 84/629; filed 2 November 1994

forms so that concerts based on generated compositions will have a varied  The tones generated by this wavetable audio synthesizer are intended
mix of pieces incorporated therein. The system incorporates a ‘weightedor use in digital system boards and add-in cards for desktop and portable
exhaustive search’ process that is used to analyze the various aspectsdamputers such as in a PC-based sound card. The application for this patent
developing the composition, from small-scale, note-to-note melodic conis related to 17 other patent applications filed simultaneously and identified

struction to large-scale harmonic motions. The process maintains a baland¥ fitle in the introduction to the patent application. One of the features is
between melodic. harmonic and contrapuntal elements in develonin ththe use of the wavetable data addressing rate for creating frequency vibrato
’ p ping Fmodulatior) effects and/or amplitude vibrato. Delay-based effects are also

composition. In general, the ‘weighted exhaustive search’ process i”V°|Veﬁossible, along with chorus and “flange” effects. Although the synthesizer
generating a plurality of solutions for producing each element of the comcan be very small, the patent document has 122 figures and 95 pages of
position. Each one of the plurality of solutions is analyzed with a series oftext.—DWM
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Ultrasonic spectroscopy of imperfect contact interfaces
between a layer and two solids®

Anton I. Lavrentyev® and S. I. Rokhlin
The Ohio State University, Nondestructive Evaluation Program, 190 West 19th Avenue, Columbus,
Ohio 43210

(Received 17 March 1997; accepted for publication 13 Septembern 1997

Ultrasonic waves reflected from the front and back surfaces of a thin layer are often not separated
in the time domain, and interfere. The spectrum of the resulting interference signal depdiils on

the thickness of the layer and the elastic moduli and density of the layer and the surrounding
material (substratels and (b) properties of the layer/substrate interface which can be described in
terms of the interfacial stiffness. In this paper the effect of interfacial stiffness is isolated by
considering the ultrasonic wave interaction with a solid layer compressed between two substrates of
the same material. Since the layer and the substrate have identical properties the effect of impedance
difference on the layer reflection vanishes. An aluminum system is selected for the experiment; the
contacting surfaces are roughened and varying pressure is applied to model imperfect interface
changes. It is shown both theoretically and experimentally that the contact pressure increase results
in increase of the interfacial stiffness and spectral minima shift to higher frequency. A simple
analytical expression relating the reflection minimum position to the interfacial stiffness is derived
and shows good agreement with experimental results. It is shown that in the
high-interfacial-stiffness limit the resonance minima positions are given by the conditiori4

+nA/2, n=0,1,2,.... In the limit of low interfacial stiffness the first minimum shifts to zero and
higher order resonances are giventbyn\/2. Since the resonance minima measurements can be
done with high precision it is proposed to use the frequency minimum shift for determination of
interfacial stiffness and, consequently, the quality of the interfacial contact19@8 Acoustical
Society of Americd.S0001-49668)06201-§

PACS numbers: 43.10.Ln, 43.20.Fn, 43.35.Sx, 43.35A0¢N |

INTRODUCTION ary conditions depends on frequency. By measuring this fre-

It is well known that the strength of many engineering gtlijfef:gsresponse one can determine the interfacial spring

structures depends critically on the bonding between struc: L ) )
tural components. Examples include, but are not limited to, Characterlzatlon.ofllmperfect interfaces between a Iayer
solid state bonds formed by inertial or friction welding or &1d two substrates is important, for example, for adhesive
brazing and adhesive/adherend bonds in adhesive joints. InRint evaluation. It has been shown that in humid environ-
perfections along the bondline such as cracks, porosity, inhents the adhesive bond deteriorates predominantly along
clusions, etc. can significantly degrade the performance dhe adhesive/adherend interfaté?® Also interfacial layers
the joint. Very often the imperfections are confined to a veryare often used in solid state bonding to improve material
thin layer in the form of an interphase separating the joining)onding compatibility. The distinctive feature in characteriz-
materials which is difficult to characterize. The ultrasonicing two interfaces simultaneously is that in most practical
method is one of the most promising for nondestructivesystems the ultrasonic signals reflectétbrmally or ob-
evaluation of interphases. When the interphasial layer is thitiquely) from the front and back sides of the adhesive layer
and the imperfections are flat the interphasial layer can bare not separated in the time domain and interfere. In this
modeled as an infinitely thin interface connected by distrib-paper we apply ultrasonic spectroscopy to characterize two
uted springs to account for interfacial stiffness reduction dugémperfect interfaces separated by a layer of thickrreso
to imperfections. The mechanical behavior of such an inter- exclude the effect of the impedance mismatch between the
face can be modeled using spring boundary conditions. Sigayer and substrates a homogeneous model system consisting
nificant effort has been pUt into experimental and theoreticabf an aluminum |ayer between two aluminum substrates is
studies of ultrasonic wave interaction with imperfect considered. The layer and substrate surfaces are roughened
interfaces.™’ The goal of these studies was to characterizeang varying pressure is applied across the system to simulate
interface imperfections using the ultrasonic signature. Thejifferent degrees of interface imperfection. In this system the
coefficient of reflection from an interface with spring bo“nd‘impedances of the plate and substrates are identical and thus
the reflection from the layer is a function only of the plate/
@Selected research articles” are ones chosen occasionally by the Editorsubstrate interfacial contact which is defined by the applied
in-Chief that are judgeda) to have a subject of wide ac_oustical intergst, pressure and the surface roughnesses. While the theory con-
and (b) to be written for understanding by broad acoustical readership. . .. . .. . .
YNow with United Technologies Research Center, 411 Silver Lane, M/SSldereci is identical for normal incidence of both longitudinal
129-86, East Hartford, CT 06108. and shear waves, the experimental results are given for the
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FIG. 1. lllustration of the problem(a) imperfect interface between two solid&) layer imperfectly bonded to two solids.

incident longitudinal wave. Examples of shear wave inci-impedance difference between contacting materials (ahd

dence are given elsewhere. interfacial stiffness. When the materials in contact are iden-

tical equation(2) reduces to

R — i(w/Q) T 1 3

A. Single imperfect interface . .

where is the characteristic frequenty

Consider two bonded solids as shown in Fi¢p)1If the

bonding is imperfect and the size and spacing between the B % 4
imperfections is much smaller than the wavelength then the 7y @
ultrasonic wave interaction with this interface can be de- _ ) _ o
scribed using spring boundary conditiohfs: Subscriptl in (3) corresponds to reflectioftransmission

, from an interface between identical materials.

Oyy= Kn(uy_u;/)i 0-),/2: Kt(uz_ UZ’),

! I
Tyy= Tyy: Oyz= Oyz; 1)

wherea,,, @,;, Uy, U, are normal and shear stresses andB: Wave interaction with two imperfect interfaces
displacements in the and z directions at the interface; SeParated by a layer
primed values correspond to the lower semispace(); Let us consider an ultrasonic wave incident from the top
Kn,K; are distributed spring constants per unit areasemispace on a layer imperfectly bonded to two identical
[(N/m)/m?]. At K,,,K,=0 the boundary condition&) be-  semispaces as shown in Figure 1b. The theory is identical for
come those for a free semispace;Kas,K;— the condi- normal incidence of longitudinal and shear waves with selec-
tions for welded contact are satisfigén alternative way to  tion of appropriate wave velocity, or V, and interface stiff-
define the interfacial stiffness is given in Ref) 1. nessK, and K;. The reflection from the layeR can be
The ultrasonic wave normal incidence reflection andseparated into two interfering signafs(a) reflection from
transmission coefficients from the imperfect interface mod+the top surface of the layéfirst-reflection signalwith am-
eled by springs are given by: plitude Ry, and (b) reflection from the bottom which is the
Z,—Zi+ i (0K )Z1Z, sum of all possible multiple reflections inside the laysr

= multiple-reflection signal
R 7, T (@lK 2,2, (multip gna

2
222 ( ) R.=Rpot RE J 6)
127 7 T (w242, where
whereZ,, Z, are the impedances of the contacting solids T1,T,e2Kn
and w is the angular frequency. An important feature of the RE:ﬁW 21 (6)

reflection and transmission coefficients given (@Y is the

existence of the frequency-dependent term. It appears physithereR;; and T;; are stress reflection and transmission co-

cally due to the inertia of the response of the bottom subefficients at the interface between mediand mediaj de-

strate to the force applied from the top substrate. With frefined by Eq.(2), h is the layer thickness. The reflection from

guency increase the substrates tend to decouple. the layer is controlled by two factors: impedance difference
From equationg2) one can see that two factors deter- between the substrates and the layer, and the interfacial stiff-

mine the reflection coefficient at each given frequen@y: ness.
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Let us consider the resonance effects of wave scattering Analogously, akkh= 7/2:
from the layer. First, assume thkt,—« (perfect bondiny

. . ; -1
andZ,;#Z,. At kh=7 (h=2\/2) the multiple-reflection sig- Ry = i R 15
nal Ry reduces to T 1-2i(0/Q) - 2(0?Q?) (15)
TioT €% In the limit K,— o« coefficientRs — — R ; thus, the first- and
Ry= WRH Ry;. (7)  multiple-reflection signals are in opposite phase and condi-

tion (11) corresponds to the minimum. One must note that in
(It is taken into account that &,—o the productT,,T,; the limit K,—o the reflection spectrum degenerates as
=1—R3,.) Since forZ,#Z, the reflection coefficienR,; R—0.
= — Ry, the multiple-reflection signal is equal in amplitude To find the condition for minimum reflection when 0
and opposite in phase to the first-reflection sidfiast term <K, < let us represent the complex reflection and trans-
(R1p) in (5)]. Thus they cancel each other and the reflectivitymission coefficient given by Ed3) in exponential form:
of the layer equals zerd®R=0. At kh==/2 (h=\/4) we

analogously obtain that T .= 1 gier — arctan— 16
- N A 0 (16)
_ Tiplpe R (1-R} 12) R ®

> 1_Rizelﬂ' 217 1+R12 12- o 0l Q o t rﬁ ) +’7T

) . ) ) , =————=¢€'%R, or=arctan — —| =1+ =

At h=\/4 the first- and multiple-reflection signals are in ! Vi+(w/Q)? R @ T2
phase and give maximum reflection 17)

2R12 Note that the reflection and transmission coefficients have a

RT™<R,+Ry= 1R, (9)  phase difference ofr/2. Substituting(16) and (17) in (12)

and (13) we obtain for the layer reflection and transmission
The conditions of maxima and minima in the case of acoefficients:
erfect interface and,# Z, can be summarized as follows: .
P 172 [1+(w/Q)?)(1+e?ertkh)

(khR=nmw, n=012.., (10 R= 1+ (0l Q)%+ (0l Q)2P T R, (18)
T i(2o1+kh)
(kR =—+n7, n=0,12.... (12) _ € ,
max- 2 T 1+(w/Q)2+(w/Q)2e2l(<p-|—+kh) . (19)
_ Let_ us _conS|der the effect of the sepond factor—rp4 reflection coefficient is zero when:
interfacial stiffness (8:K,<%)—on the reflection from the
layer assuming that the impedances of the layer and sub- ®R_T _
strates are equakZ,=2Z,. Then the coefficients for the re- (KWmin=75 ~¢rtnm n=01.2.., (20
flection (transmissiohfrom the single interface are given by . £ )
(3). The reflection and transmission coefficients from twoO" In terms of frequency:
spaced interfaces are V{(1+2n o7
- R =— -——|, n=01.2..., (21)
T2g2ikn hi 4 2
R=R+Rs=R/+ — =R, 12 . . -
PR 1—R,2e2"‘h ! (12 whereV is the velocity for longitudinaV, or sheaw, wave.
Tog2ikn Note that Eq.(21) is transcendental sincgr on the right

_ . 13) hand side depends on frequency. The frequency of minimum
1—Re?kh reflection can be found by numerical solution of E81).
The maximum reflection(minimum transmissionis ob-

Two principal differences from the previous cageerfect
P P P e served near

bond, different materiajJsmust be noted:
(@ The signs of the reflection coefficient from the frontand  (kh)R) =n7—¢r, n=0,12..., (22
back interfaces are the sani®;,=R,;=R,.
(b) The frequency dependence of the reflection coefficient is (R) _ \ (E_ (PT) N=0.12 23
defined not only by the distance between interfaces but maxTh |2 2 AR
also by the frequency dependenceTofand R,. This
results in more complicated conditions for spectral
minima and maxima.

The conditiong22), (23) are not exact due to the presence of
the frequency-dependent phase term in the coefficiBnts

_ . , [(17),(18)].
At kh= 7 the multiple-reflection signal amplitude Figure 2 shows the dependence of the frequency for re-
1 flection minima on interfacial stiffness calculated from Eq.

R2=mR, (14 (21) using Newton’s methodthe calculation converged in
only 2 or 3 iterations One can see that &5,— (perfect

In the limit K,—o (Q1—) the multiple-reflection ampli- bonding the minima are atkh=/2,3%/2,... (or h

tudeRs— R, ; thus, the first- and multiple-reflection signals =\/4,3\/4,...). The physical meaning of the=\/4 reso-

are in phase and conditigt0) corresponds to the maximum. nance is obvious: The waves reflected from the second inter-
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FIG. 2. Reflection spectrum minima positions for aluminum plate between

aluminum substrates as a function of interfacial stiffness. Calculations are

done for aluminum plate thickne$s, =0.47 mm. FIG. 3. Spectra of the signals reflected from the aluminum plate imperfectly
bonded to aluminum substrates. Calculations are done for different interfa-
cial stiffnesses.

face travel an additional distancdn2 \/2 and arrive at the shear wave with substitution of, by V, andK., by K, .

top interface in antiphase with the first-reflection signal, thus A
Analogous phenomena were observed for environmental

nullifying the reflection from the layer. The interfacial stiff- . . . T
ness decrease results in minima shift to lower frequency. Irl]nterfamal degradation of an A/Al adhesive joifftDue to

- . . _ exposure to a severe environmésditurated NaCl solution at
t:((e) )\I|/r2n|t K)n?r?eKthiOmcl:rggneaccfr?:eﬁsp?nlzjz tc?,t?e. ;éso(rTanceBS °C under loagthe adhesive/aluminum bond deteriorated
of a{ fre’e. .Iéy.er Thetn< 0 is a special case of a layer with with formation of the interfacial fluid-filled microdisbonds.
) n :

impedanceZ, bonded to two semispaces with impedancesThe eyolqun_ of ponds was modeled b.y decrease .Of the
Z, andZs. WhenZ,=(Z,Z3)2 the condition for full trans- shear interfacial stiffness<0K;<<ec assuming normal stiff-
mlission 8 i Khe 772/2+ n17T3 n=012 (Ref. 20 (h nessK,,=. Both the experiment and model showed that the
—\/4,3\/4, ...) which in tr’1e Iimit'Z HZ 7 iransforms interface degradation was accompanied by a strong shift of
0 oUr case. Trseres the spectral minimun{measured at oblique incidencen

Note that the first and higher order minima positions areIOWer frequency. This phenomenon—spectral - minimum

sensitive to the interfacial stiffness in different frequencysggmlc?ns(iE?;;Zg:lnzttli?fniz;cft ?:;r?hs:%gg dt?c? n?g;ggfgy
ranges. For example for the case considered in Fig. 2 th

maximum sensitivity point(deflection point for the first the interface stiffness as demonstrated experimentally in the

minimum is about 18 N/m® and for the second 5 olowing section.
-10* N/m?3. Thus, simultaneous measurement of minima po-
sitions of several resonances widens the range of sensitivit&lr EXPERIMENTAL APPROACH
to the interfacial stiffness. A. Experimental concept

Figure 3 shows cglculateq spectra of the signal reflected As discussed above, two major factors determine the
from the 0.47-mm-thick aluminum plate enclosed t.)etweenspectra of the reflection from the layda) layer thickness
aluminum substrates. The change of interfacial stiffnesses . : .
betweenx and 0 results in ar/2 increase ofp; and corre- and layer and substrate prqperﬂes dby propert.|es(st|ﬁ-
sponding spectral minimum shift. This shift corresponds tonesss of the Iayer/sut_)strate interface. We consider here the
that calculated from Eq(21) and s.hown in Fig. 2. One can effect of_lnterface ;tlffne_ss separgtely. Two model systems
see from Fig. 3 that ak o (perfect bondingall the ul- are considered: a single imperfect interface between two alu-

. : . minum substrates and a system with two interfaces formed
trasonic energy is transmitted through the plate and the re- Y

flection coefficientR, =0. For an imperfect interfaceK(, eDy an alumlnum.platéabout 0.5 mm thickcompressed be- .
. tween two aluminum substrates. The surfaces of the alumi-
<) part of the energy is reflected from the layer and the .
- . . num plate and substrates are roughened and varying pressure
minima are at frequencies slightly lower thdth==/2 . . ; ;
. . : . is applied across the system to simulate different degrees of
+nm. Further decrease of interfacial stiffness results in. . .
- : ; interface imperfection.
spectral minima shift to lower frequency. In the lirki,—0
the minima are close to the conditidth=ns. At zero in-
terfacial stiffness all the ultrasonic energy is reflected, th
reflection coefficient equals 1 and no minima are observed. The experiments were done using a computer controlled
The above results are identical for the normally incidentultrasonic experimental system shown in Fig. 4. The contact

eB' Experimental apparatus
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TABLE I. Estimated roughness of the aluminum samples.

Computer .| FFT and Signal
¢ Processing Surface preparation Roughndsg,, um

Sl A Sandpaper, grit 500 0.34
igita i [ .
Oscillgscope ':gig!ed (E‘: zzﬂzﬁﬁgdgm 0 Sl.gg
D 4.5 mm steel balls 5.54
¢'EEE Contact
Pulser/ " transducer
Receiver | € T deconvolved with a reference signal taken from the

aluminum—aluminum interface at zero applied pressure.

C. Sample preparation and characterization

\ Rorl;gh The contact surfaces before roughening were polished
> suriaces on the disk by 5um alumina particles. Three types of sur-
//////////////////W face roughening were used: sandpapefggt 120 and grit
500), sandblasting using 0.22 mm diameter glass beads, and
FIG. 4. .Schgmatic of the experiment system for ultrasonic measurement qropping 4.5 mm steel balls from about 200 mm height. The
interfacial stifness. average surface roughneBg (the average variance of the
surface height distributignand h,,,s (the square root of the
variance of the height distributiprwere measured for each

specimzns zgnsisteld of ? 5Q-mm-thi|9kdflat ?Iggninumd_blocl%ample by a Wyko Topo-3D stylus profilometer. The results
(top) and a 40 mm long aluminum cylinder of 25-mm diam- are shown in Table I. In the table, the samples are labeled A,

eter(bottom. The block surface_s were machined to paraIIeI.B, C, and D. Note that the roughness obtained from the line
;’he cgn;acgt Isurfa_c;ﬁs \t/)vlerek pollshedl and dtgen rough:aned irface profile is always smaller than the real value because
hescrl N B € ﬁlw L de TEC S were place e}wgea P at(;s the stylus usually does not go over the summits and valleys
the pres¢Buehler Ltd). The pressure was applied throug 4put rather traverses the shoulders of individual asperities.

II-shaped block. Contact broadband longitudinal UItrasoni‘f-’ossible corrections are discussed in Refs. 21, 22, and 23.
transducers with central frequencies at 5 and 10 MHz were

placed on top of the upper block. For the measurements with

two interfaces a thifless than 0.5 mm thigkaluminum plate ||, EXPERIMENTAL RESULTS AND DISCUSSION
25 mm in diameter was placed between the aluminum ) )

blocks. The plate surfaces were roughened in the same w{}‘/ Single imperfect interface: measurements

as the surfaces of the blocks. The reflected ultrasonic signasf interfacial stiffness

were amplified, digitized, averaged by a HP 54504A 400- The interfacial stiffness between two contracted rough
MHz digital oscilloscope, and collected by a computersurfaces has been measured ultrasonically by several
through an IEEE-488 interface. The data were then proauthorst?>'>®Also, several studies have been performed to
cessed in the frequency domain using an FFT program anestimate it theoretically?’ 23

>
-~ 0 MPa
18 MPa
> LT
g 35 MPa he
3 WW 3 °
= 53 MPa 2 sl o
= _,\/\/\/\/\/— o A
< 105 MPa g v
—— N\ 201 +
X
| 88MPa
25 - 105 MPa
: . 2 3 3 : 5 6 7 8
(a) Time, pusec (b) Frequency, MHz

FIG. 5. (a) Typical time-domain signals reflected from the interface between two contacting rough aluminum surfaces at different pressures applied across the
interface;(b) corresponding reflection spectra.
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v Roughened by 4.5 mm BB's o fot 500 o
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o Grit 500 > 1 ¢ Sandblasted
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Frequency' MHz FIG. 7. Dependence of the interfacial stiffness on the pressure applied

across the interface.

FIG. 6. Frequency spectra of the signals reflected from water/rough Al

surface interface. spherical segment base radias and asperity effective

heighth, (close toh,ms). They showed that the interfacial

In this study we measure reflection from a single imper-stiffnessK,,~n?R®?, wheren is the surface density of as-
fect interface prior to the measurement from two imperfectperities. Sincen~a~2 and R~a?/(2R) (in approximation
interfaces. As an example, Fig(ah shows typical time- R>a) the interfacial stiffnes& ,~ 1/(ah®?). Thus, the base
domain reflected signals recorded at different pressures apadiusa which characterizes the horizontal size of the asperi-
plied across the single interface between contacting surfaceis also affects the measured interfacial stiffness. Since the
of two aluminum blocks roughened by 500 grit sandpapersteel balls used for preparation of sample(45 mm) are
(A broadband 5-MHz longitudinal wave ultrasonic trans- much larger than the glass bea@s22 mmn) used for prepa-
ducer was used to collect these dat@orresponding fre- ration of sample C the corresponding base radius much
qguency spectréadeconvolved with the spectrum at zero ap- larger for sample D resulting in smaller interfacial stiffness.
plied pressurgare shown in Fig. &). The theoretical curves
shown in the same figuréesolid lineg are calculated using
Eq. (2) where the interfacial stiffness is optimized to get the
best fit to the experimental data. Reflection spectra of the 0.47-mm aluminum plate be-

One must note that the ultrasonic wave scattering fromtween aluminum substrates were measured with different
rough surface asperities may be significant and, in certaistresses across the interface. A 10-MHz broadband ultrasonic
conditions, may affect the results of the interfacial stiffnesstransducer was used for this experiment. Figui@ 8hows
measurement. Figure 6 shows spectra of the signals reflectégpical time-domain signals recorded at different pressures
from a water/rough aluminum interface along with the bestapplied across the Al/Al/Al sandwich with contacting sur-
fitting f2 curves. The measurements were performed usingaces roughened by 500 grit sandpaper. At zero applied pres-
an immersion ultrasonic transducer with a frequency bandure all the energy is reflected from the front Al/Al interface.
from 10 to 35 MHz placed at about 50 mm from the reflect-The pressure increase results in decrease of the front inter-
ing surface. One can see that at frequencies below 10 MHiace reflection amplitude accompanied by appearance of sig-
the scattering effect is insignificant and can be neglected. nals reflected from the back interface. At 105 MPa the sig-

The dependence of the interfacial stiffness on the apnals reflected from the top and bottom interfaces are
plied pressure for different surface roughnesses is shown iseparated in the time domain with the second signal ampli-
Figure 7. One can see that the greatest interfacial stiffnedside about half that of the first. Figurél8 shows the corre-
values are achieved with the smoothest surfacesponding spectra of the reflected sign@sconvolved with
(hyms=0.34um)—K , is up to 1.410" N/m? at 105 MPa. the reflection at zero pressir©ne can see that as predicted
This result is in line with the intuitive notion that the smooth theoretically the spectral minima shift to higher frequency
surfaces provide better conta@te., the greatest interfacial occurs with pressure increase as indicated by dashed lines in
stiffness. the figure. For example, the second minimum shifts from 8.3

However, the lowest interfacial stiffness is measured folMHz at 26 MPa to 9.2 MHz at 88 MPa. Another example
sample D which has smalldr,,=5.54um than sample C obtained for contact surfaces roughened by grit 120 sandpa-
(hyms=5.65um). This result can be explained qualitatively per is shown in Fig. 9. The observed shifts of the spectral
using the theoretical predictions of Yoshioka andminima are smaller than in the previous case which is due to
Scholtz?>?® These authors modeled the individual asperitiessmaller interfacial stiffness change produced by the same
on the rough surface as sections of spheres of raRius applied pressurérig. 7).

B. Spectroscopy of two spaced imperfect interfaces
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FIG. 8. (a) Typical time-domain signals reflected from the aluminum plate between aluminum substrates at different pressures applied across the imperfect
interfaces confining the platéh) corresponding reflection spectra. Plate thickness is 0.47 mm, all the surfaces are roughened by 500 grit sandpaper.

The dependence of the second spectral minimum posfor an aluminum interface layer with thickness of 0.47 mm
tion on the interfacial stiffness is given in Fig. 10. The figureused in the experiment. One can see that the experimental
summarizes the data shown in Fig$h)8 9, and Fig. 7. The and theoretical data are in good agreement.(Eh. (Fig. 10
minimum frequency positions plotted on the vertical axis areallows one to determine interfacial stiffness from the mea-
determined from the spectra measured at different appliedured frequency minimum position.
pressuregcircles—from spectra in Fig.(B) squares—from
spectra in Fig. }) Fo.r each frequgncy point at given pressure, ~oNCLUSIONS
the corresponding interfacial stiffness was determined from
the dependence of the interfacial stiffness on preséktige This paper describes the effect of imperfect interfaces
7) established in experiments on a single interface. This stiffbetween a layer and substrates on the reflected ultrasonic
ness value was used on the horizontal axis as the coordinaségnal. The ultrasonic wave interaction with an aluminum
for experimental frequency minimum. The figure also showdayer between aluminum substrates is studied when the layer
the theoretical curvesolid line) calculated for frequency and the substrate properties are identical and thus the effect
minimum position versus interfacial stiffness using E2)  of impedance differences on the layer reflection is removed.

5 10
Grit 120 8.8 MPa 18 MPa
0.
-5 9- .
o 35 MPa T
S -10- =
o 70 MPa 5 8 o
2 -15- <
Ei “105 MPa = )
< -204 :.:’ 7] o Grit 500
25 o Grit 120
— Model calculation
'30 T T T T T T 6'I“"I""I""I
0 2 4 6 8 10 12 14 0 500 1000 1500
Frequency, MHz Interfacial stiffness, 1012 N/m3

FIG. 9. Spectra of the signals from the aluminum plate between aluminun¥IG. 10. Dependence of the second spectral minimum position on the in-
substrates at different pressures applied across the imperfect interfaces cdarfacial stiffness for a 0.47 mm thick aluminum plate between aluminum
fining the plate. Plate thickness is 0.47 mm; all the surfaces are roughendalocks with contact surfaces roughened (ay grit 120 sandpaper an(b)

by 120 grit sandpaper. grit 500 sandpaper.
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The mandate of ASA Working Group S12/WG11 has been to develop “laboratory and/or field
procedurés) that yield useful estimates of field performance” of hearing protection deviteps.

A real-ear attenuation at threshold procedure was selected, devised, tested via an interlaboratory
study, and incorporated into a draft standard that was approved in [1999. Roysteret al,
“Development of a new standard laboratory protocol for estimating the field attenuation of hearing
protection devices. Part |. Research of Working Group 11, Accredited Standards Committee S12,
Noise,” J. Acoust. Soc. Am99, 1506-1526(1996; ANSI S12.6-1997, “American National
Standard Methods for Measuring Real-Ear Attenuation of Hearing Protectdraérican National
Standards Institute, New York, 1997 The real-world estimation procedure utilizes a subject-fit
methodology with listeners who are audiometrically proficient, but inexperienced in the use of
HPDs. A key factor in the decision to utilize the subject-fit method was an evaluation of the
representativeness of the laboratory dais-avis attenuation values achieved by workers in
practice. Twenty-two field studies were reviewed to develop a data base for comparison purposes.
Results indicated that laboratory subject-fit attenuation values were typically equivalent to or greater
than the field attenuation values, and yielded a better estimate of those values than did

@ This paper is the last of three parts of a body of work that represents the research and analyses of S12/WG11 in conjunction with the development of ANSI
S12.6-1997. Part | appeared in 1996 in J. Acoust. Soc. #29n1506-15261996. It referenced two succeeding parts, one of which Part Il is still in press
and hence will appear out of chronological order. Additionally the advance citation of this paper in Part |, listed the first two authors in the reverse order from
that which appears above.
b:Selected research articles” are ones chosen occasionally by the Editor-in-Chief that are (aldigedave a subject of wide acoustical interest, énjcto

be written for understanding by broad acoustical readership.
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experimenter-fit or experimenter-supervised fit types of results. Recent data which are discussed in
the paper, but which were not available at the time of the original analyses, confirm the findings.
© 1998 Acoustical Society of Amerid&0001-496808)03001-X

PACS numbers: 43.10.Ln, 43.50.Hg, 43.66.Vt, 43:16[GAD]

INTRODUCTION intralaboratory variability and thus be unsuitable for stan-
A quantity of fundamental concern to the understandingdard'zat'on' However, the outcome of the experiments and

and description of the performance of hearing protection deg,ubsequent analyses failed to justify such concems, instead

vices (HPD9 is the attenuation provided by such devicesdeémonstrating that the subject-fit method was even prefer-
under conditions of actual use. Since the mid-1970’s, studie ple.m tgrms of reproducibilityRoysteret al, .1996.' Wwith
have been published with increasing regulafBgrgeret al, this in mind, as well as the fact that the s_ubject—ﬂt data had
1996 indicating that the standardized laboratory test procef"lr(?ady been s_hown to predict the approximate upper bound
dures utilized in North America do a very poor job of pre- esUma’Fe Of. f|eld perfprmqnce, and that experimenter-
dicting such performancéANS| S3.19-1974, ANS| S12.6- sgpgrwsed f|tt|ng pnly diminished the usefulness 'of the pre-
1984. This discrepancy between laboratory and real-worlodlcu_on’ Fhe decision was made_ to _focus attention on the
data is especially troubling considering the importance tha?ume‘:t']clt data for the analyses in this report.
many hearing protector purchasers and users ascribe to pub-
lished attenuation values. As a result, Accredited Standards METHODS
Committee S12, Noise, assigned its Working Group 11,A The laboratory dat |
“Hearing Protector Attenuation and Performance,” the task - € laboratory data sample
of developing a procedure that would yield useful estimates The HPDs which were selected for the interlaboratory
of “achievable field performance” i.e., the noise reduction study, and hence for the real-world comparison, are de-
that properly trained and motivated workers receive fromscribed in Sec. Il C and Fig. 1 of Royster al. (1996. They
wearing their hearing protectors in occupational settingsinclude the Aearo Company E-AfRClassic foam earplug,
Such results were defined as among the higher values dfie PlasMed, Inc. V-51R premolded earplugssizes, the
attenuation attained by groups of informed users in well-\Willson Safety Products EP100 premolded earplu@s
managed and well-supervised industrial and military hearingizes, and the Bilsom UF-1 earmuffs. The devices were se-
conservation programs. lected because they were products for which the greatest
This paper describes analyses conducted by the menamount of real-world data were available in the literature,
bers of Working Group 11 to evaluate the suitability of abecause of their popularity in the marketplace at the time of
proposed standardized laboratory test procedure for measuhe study, and because they represented a diverse range of
ing real-ear attenuation at threshdREAT) in a manner that product types with a focus on earplugs, which were the type
estimates achievable field performance. A prior paper deef hearing protector that the Working Group had deemed
scribed an interlaboratory comparison study undertaken bprovided a greater real-world estimation problem than did
Working Group 11 that was used as the basis for the devekarmuffs.
opment and evaluation of the proposed proto@®byster The laboratory-based attenuation values used in the fol-
et al, 1999. The reader is referred to that report and to thelowing analyses are the average of each test subjects’ two
final approved standard that was developed as the outcontgals in the Subject-Fit 1 test session, and their two trials in
of the Working Group’s effort§ANSI S12.6-199Y for the  the Subject-Fit 2 test session, from the interlaboratory study
rationale behind the experiments, a description of the overakis reported in Table Il of Roysteat al. (1996. This pro-
work effort, the details of the test procedures, and a presendded a single attenuation value for each of 24 subjects at
tation of the actual results of the interlaboratory study. Thiseach of four laboratories, based on four attenuation measure-
paper will focus on a comparison of the interlaboratory tesiments per subject. In this paper, trials were averaged together
results to available field studies, in order to draw inferencess in the original analyses by Roysteral. Furthermore,
about the degree to which the laboratory data can approprsessions were also averaged together since the ANOVAs in-
ately be used to predict field results. dicated no effect of practice, i.e., no difference between the
The Working Group’s interlaboratory protocol involved Subject-Fit 1 and Subject-Fit 2 test sessions. And finally, the
two distinctly different methods, an informed user-fit and adata were also averaged together across the four laboratories
subject-fit approach. The latter procedure involved test subsince an ANOVA involving only the subject-fit data indi-
jects who were audiometrically proficient, but naive in thecated no overall laboratory effect, albeit with a significant
use of hearing protection. Prior research had suggested theffect for a few cases—1000 and 2000 Hz for the Bilsom
the subject-fit method would provide better field estimatesarmuff and 1000 Hz for the E-A-R Plug, due to lower at-
(Berger, 1988; Casali and Epps, 1986ut the informed tenuation values from one laboratory. However, the inter-
user-fit (later somewhat modified and implemented as araboratory differences between subject-fit data for the EP100
experimenter-supervised fit in the final approved standardand V-51R earplug were not significant at any frequency.
was also included in the interlaboratory protocol because ofherefore all of the subject-fit data were pooled across 96
the concern that the subject-fit might lead to large inter- andubjects with four trials per subject to create a benchmark
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TABLE |. E-A-R classic foam earplug. Mean subject{8F data from the interlaboratory study, manufacturer’s labeled values, and 16 real-world studies.
N is number of subjects, SD is standard deviation, shaded values are significantly less than Interlab pat@e@5tand underlined values are significantly
greater ap<<0.05.

Interlab N M-fg.'s N
SubjectFit 96 Labeled 10
Freq. Mean SD Mean SD t
125 21.4 7.8 37.4 57 6.30
250 22.0 73 40.9 5.0 7.98
500 24.2 7.8 44.8 3.3 8.25
1000 25.2 6.9 43.8 3.6 8.38
2000 31.0 4.7 36.3 4.9 3.38
4000 38.4 5.8 426 3.1 2.25
8000 38.3 7.0 47.3 27 4.02
{0.05,104=1.984
Crawford/Nozza (1981) Hachey/Roberts (1983) Edwards et al. (1983) Edwards/Green (1987)
Study # N Study # N Study # N Study # N
021150 58 021160 31 021170 56 021175 28
Frequency | Mean SD t Mean SD t t Mean SD t
125 24 1 1.71 7.16 4.59 228 7.5 0.72
250 24 11 1.36 7.56 5.59 236 8.3 0.99
500 26 10 1.25 8.21 6.35 23.9 8.0 0.18
1000 28 9 217 7.47 5.81 247 7.6 0.33
2000 36 9 4.52 6.80 222 337 7.7 2.28
4000 39 6 0.61 7.50 4.39 41.5 7.6 2.31
8000 a5 10 2.40 10.77 8.81 37.1 7.8 0.78
t0.05,152=1.97 t0.05,122=1.98
Edwards/Green (1987) Edwards et al. (1983) Abel et al. (1982) Abel et al. (1982)
Study # N Study # N Study # N Study # N
021176 28 021180 56 021190 55 021200 24
Frequency | Mean SD t Mean SD t Mean SD t Mean SD t
125 95 9.8 8.24 ' 8.3 6.37 4.66
250 96 8.8 9.35 10.0 5.50 4.53
500 118 92 9.06 8.7 7.05 5.27
1000 13.3 9.1 9.10 7.7 5.91 4.66
2000 249 12.0 4.44 7.5 6.55 4.79
4000 . . . 262 9.5 9.84 8.5 11.31 7.70
8000 308 9.1 465 235 97 1087
to.05.122=1.98 to.05,150=1.97 t0.05,140=1.97
Pfeiffer et al. (1989) Casali/Park (1991) Casali/Park (1991) Hempstock/Hm (1990)
Study # N Study # N Study # N Study # N
021240 69 021250 10 ) 021251 10 021260 72
Frequency | Mean SD t Mean SD t Mean SD t Mean SD t
125 - 15 1" 4.37 10.1 2.89 25.0 8.7 1.37 154 9.0 4.62
250 1 9 8.65 12.0 2.93 273 8.5 215 16.2 87 4.69
500 o 10 5.19 13.3 2.75 311 9.6 260 § 181 8.8 4.75
1000 23 10 1.67 131 3.35 30.8 7.9 2.41 211 7.8 3.60
2000 27 8 4.03 131 224 335 5.2 1.59 | 281 7.5 3.07
4000 433 9 4.68 . 11.5 3.89 36.8 4.4 0.85 33.1 8.6 477
8000 030 8 7.07 | 216 10.6 4.36 36.3 6.6 0.86 321 10.2 4.67
to.05,163=1.97 t0.05,104=1.98 ta.05,104=1.98 to.05,166=1.97
Behar (1985) Behar (1985) P-Vermeer et al. (1993) Berger/Kieper (1991)
Study # N Study # N Study # N Study # N
021220 42 021222 24 021270 58 121516 22
Frequency | Mean SD t Mean SD t Mean SD t Mean SD t
125 19.5 8.1 1.44 23.9 9.5 1.30
250 162 6.5 4.44 | 169 6.0 3.16 225 9.2 0.37 250 10.7 1.58
500 195 8.6 3.16 200 9.1 2.28 245 1.1 0.20 28.8 11.5 227
1000 198 6.8 4.25 225 6.4 1.74 256 9.4 0.30 30.1 10.5 2.70
2000 32.8 7.5 1.71 30.2 52 0.73 35.5 7.4 4.62 324 6.4 117
4000 37.3 6.5 0.99 38.8 6.8 0.29 423 9.3 3.21 401 4.4 1.29
8000 328 107 3.59 | 333 91 2.94 43.8 9.1 4.21 37.5 8.1 0.47
t0.05,136=1.97 to.05.118=1.98 t0.05,150=1.97 t0.05,165=1.97

against which the real-world mean attenuations and standaekperimenter-fit protocol of ANSI S3.19 as interpreted by
deviations of attenuations could be compared. These avethe U. S. Environmental Protection Agen¢gPA, 1979.
aged values, across practice and across laboratory, are rfEhe EPA’s specific implementation does not use the first step
ported in Tables I-IV of this report, in the cells labeled of the S3.19-specified experimenter (fiamely, a subject fit
“Interlab Subject Fit.” of the deviceg, thereby causing the fitting to become a purely
Also reported in Tables | through IV are the manufac-experimenter-controlled procedure. In effect, the current
turers’ published values based upon testing according to thEPA interpretation and test lab practices utilize the subject as
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TABLE II. V-51R earplug. Mean subject-f{SF) data from the interlabora- TABLE Ill. Wilson EP-100 earplug. Mean subject-fiEP data from the

tory study, manufacturer’s labeled values, and 5 real-world stutless. interlaboratory study, manufacturer’s labeled values, and 5 real-world stud-
number of subjects, SD is standard deviation, shaded values are significantigs. N is number of subjects, SD is standard deviation, shaded values are
less than Interlab values pt&<0.05, and underlined values are significantly significantly less than Interlab values@t0.05, and underlined values are

greater afp<<0.05. significantly greater ap<0.05.
Interlab N Mfg.'s N Interlab N Mfg.'s N
Subject Fit 96 Labeled 10 Subject Fit 96 Labeled 10
Frequency] Mean SD Mean SD t Frequency | Mean SD Mean SD t
125 1.5 104 20 2 2.57 125 14.7 1.7 27 3.9 3.29
250 10.9 10.0 22 2 3.49 250 14.5 11.6 29 2.9 3.92
500 116 100 24 2 3.90 500 15.4 125 31 3.0 3.92
1000 14.1 10.2 28 2 4.28 1000 17.5 1.1 33 3.0 4.38
2000 213 9.9 34 2 4.03 2000 24.4 10.2 37 4.0 3.86
4000 22.8 7.9 37 3 5.62 4000 30.1 11.1 45 38 4.21
8000 18.6 1n2 37 3 5.16 8000 27.0 14.0 36 43 2.02
t0.05,104=1.98 to.05,104=1.98
Royster et al. (1991) Abel et al. (1982) Crawford/Nozza (1981) Edwards et al. (1978)
Study # N Study # N Study # N Study # N
Frequency] Mean SD t Mean SD t Frequency Mean SD 1 Mean SD 7
125 10.8 10.2 0.27 198 5 T2 =27 = 3 R
250 13.3 10.1 0.97 250 8 12 236 | 4 8 4.48
500 14.6 14.5 0.93 12.3 9.5 0.29 500 10 11 187 | & 8 415
1000 14.8 1.5 0.22 10.5 9.3 1.46 1000 bigin 13 203 | e 8 510
2000 188 8.7 0.83 13 8.6 311 2000 22 15 0.90 A3 13 4.88
4000 22.0 10.3 032 | 186 94 3.59 s000 Fosgis 19 386 g 10 518
8000 sooo | 14 12 403 | 9 12 6.17
to.os,106=1.98 to.0s.114=1.97 to.05,116=1.97 t0.05,122=1.97
Edwards et al. (1978) Fleming (1980} Abel et al. (1982) Smoorenburg et al. (1986)
Study # N Study # N Study # N Study # N
019901 84 019902 9 018904 45 018906 46
Frequency| Mean SD t Mean SD t Frequency | Mean SD t Mean SD t
125 9.0 11.0 1.57 8.6 5.4 0.82 125 16.5 10.8 0.87
250 9.0 10.0 1.27 9.4 71 0.44 250 17.4 9.9 145 B 9.7 3.89
500 9.0 11.0 1.66 11.4 8.7 0.06 500 18.7 9.3 1.58 17 125 3.44
1000 13.0 11.0 0.70 15.9 6.3 0.52 1000 20.9 9.8 176 | 90 129 4.05
2000 20.5 14.0 0.45 21.9 9.9 0.17 2000 232 9.3 067 | 194 14.9 2.34
4000 1.0 1.98 21.3 8.4 0.54 4000 28.8 9.6 068 | 242 = 141 2.71
8000 | 140 120 2.66 18.4 12.6 0.05 8000 452 150 4.59
to.05,178=1.9 t0.05,104=1.98 t0.05,139%1.97 t0.05,140=1.97
Padilla (1976) P-Vermeer et al. (1993)
Study # N Study # N
019903 183 018919 12
Frequency] Mean SD t Frequency Mean SD t
125 125 7.9 8.4 1.95
250 250 8.3 10.7 1.76
500 | 9.1 5.14 500 9.2 1.8 1.63
1000 1000 | 98 6.7 2.41
2000 2000 | 154 6.7 2.97
4000 4000 19.6 13.4 3.02
8000 8000 171 13.4 2.32
t.05,114=1.97 to.05,106=1.98

though she or he were a test fixture to which the experi@nd Roberts, 1983; Hempstock and Hill, 1990; Mendez

menter applies the HPD being tested. This type of manufacSt al.,. 1986; Padilla, 1976_; Pekkarinen, 1987; Pfeifﬁral.,.
turers’ data represents the information most commonly availd989: Roystertal, 1991; Passchier-Vermeet al, 1993,

able to customers in North America today for purposes offnd Smoorenburgt al, 1986. The total data base of 22
specifying and selecting HPDs. studies comprises results from over 90 different industries, in

seven countries(Argentina, Canada, Finland, Germany,
Netherlands, UK, and U.Bwith a total of approximately
2900 subjects. Of those studies, 16 included data on the four
The first reported data on field performance of HPDsHPDs which were tested in the interlaboratory comparison.
were published by Reagan in 1975. Since then, at least 2Bor additional details on the studies, readers are referred to
additional studies of which the authors are aware have beahe individual reports and to the complete summary by
come available worldwidé€Abel et al, 1982; Behar, 1985; Bergeret al. (1996.
Berger and Kieper, 1991; Casali and Park, 1991; Chung Measurements in the field studies were conducted by
et al, 1983; Crawford and Nozza, 1981; Durkt, 1993; Ed-independent researchers, government-sponsored investiga-
wards et al, 1983; Edwards and Green, 1987; Edwardstors, and by staff employed at the industries which supplied
et al, 1978; Fleming, 1980; Goff and Blank, 1984; Hacheythe data. In all cases, the test subjects were private-sector

B. The real-world data sample
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TABLE IV. Bilsom UF-1 earmuff. Mean subject-fi(SF) data from the  the limits of the Variabi”ty of the available data, it was ap-

?nterlal'aoratory study, mgnufacture'r‘s labeled valugs,. and 3 real-world S‘“‘:propriate to collapse the results across scheduling method,
ies. N is number of subjects, SD is standard deviation, shaded values are

significantly less than Interlab values@at0.05, and underlined values are and across methods of measuring attenuation as well.

significantly greater ap<0.05. A very recent evaluatic_)n of real—wqud hearing protector
performance was also reviewed for this paffecott, 1995,
Tnieriab N WMig's N but not ipcluded in the dgta tables. This exten;ive study of
Subject Fit 96 Labeled 10 350 subjects at 9 sites included E-A-R Classic foam ear-
Frequency | Mean 22 ":"7331" 13‘; 8'37 plugs, one of the four HPDs evaluated in this study, and the
125 7.4 : 17.1 . . . . _
250 14.0 34 19.9 13 5.43 one for which substantial o!ata al_rea_dy existed. _Althoggh _the
500 207 33 256 2.4 456 Scott results were not available in time for full inclusion in
1000 29.2 3.8 328 1.7 2.96 this study and statistical analyses, qualitative comparison to
iggg g;g :'g % ﬁ 2";; the 16 existing measurements on the foam plug indicated that
8000 248 49 439 2.8 576 the newer values only served to confirm that which had al-
to.0s, 104=1.98 ready been observed.
Hachey/Roberts (1983) Casali/Park (1991) The real-world data for the four HPDs of this study are
Study # N Study # N presented in Tables I-1V, along side the previously men-
056403 31 056416 10 tioned interlaboratory results. A blank cell indicates the au-
F'e‘:::”"y M::“ f[: 0'5 > M:‘:" 48':2) 0; - thors did not test attenuation at that frequency, most notable
20 |88 50 655 | 122 44 155 being Padilla(1976 who only tested at 500 Hz. For each
500 | 168 62 451 19.3 5.2 1.20 study, the reference is providé¢ske the referencgsas is the
;ggg gg-g g-‘; 1-2‘1"’ , ;gg g-g ;2; number of employees who were tested, and the study identi-
a00 | 265" o2 s18| 330 66 028 fication number(for the author’s internal purposes
8000 240 86 871 35.3 7.0 0.29
to.05, 125=1.98 to.05, 104=1.98 C. Analysis
Casali/Park (1991 . .
gfjd'y :r ( N ) It was not possible to use a statistical tool such as an
056417 10 ANOVA to provide a basis for comparison of the real-world
Frequency | Mean SD t (RW), interlaboratory subject-fifSFH, and manufacturers’
;gg 193'49 32 ;'g; published(MFG) data, since raw RW and MFG values were
500 21.0 28 0.28 not available. However, when the means and variances of
1000 273 3.7 1.51 two populations are compared with the assumption being
2000 | 286 38 224 that the two populations will have equal means and vari-
4000 84 52 205 i 5 PP L
8000 260 56 073 ances,u1=u, and (oq)°=(o,)°=0c", the distribution is
10,05, 104=1.98 : that of thet-test(Mendenhall, 197p Thet-tests were run for

independent samples of differing size, with a presumption of
normal distributions and equal variances in both samples.
The equal-variance assumption was appropriate for the SF-
worker; or military perspnnel egposed_ to noise who wergg_ Ry comparisons, but not for the SF-to-MFG compari-
tested in most cases while wearing their own HPDs. sons, since in the latter case the MFG variances were sub-
The facilities that have been examined most likely reP-stantially smaller. The effect of the inhomogeneity of
resent the better hearing conservation programs in existencgariance in this instance, wherein the distribution with the
This presumption is based upon the increased likelihood ofsser variance also has less than or equal to the sample size
finding higher-quality programs among companies and 0rgsf the other distribution, is to make thetest more conser-
nizations interested in and choosing to participate in thgative, i.e., it is less likely to reach significance. In spite of

complicated, time consuming, and costly research of the typgis all SF-to-MFG differences were found to be signifi-
required for real-world evaluations. In fact, in at least two of canly different.

the more recent studies, the locations were selected specifi- The computed-values are also listed in Tables 1-1V,

cally because the authors believed them to be exemplaryjong with the associated degrees of freedom indicated in the
(Edwards and Green, 1987; Pfeiffer al, 1989. subscript. The mean RW values which are significantly less

Due to the variety of authors who have been involvedinan the SF valueat p<0.05 are shaded, and those which
and the diversity of countries in which the research has beeg,e significantly greater are underlined.

conducted, the real-world data base spans a number of dif-
ferent procedures. Some of the most interesting parameterﬁ
that could potentially influence the data and are germane to’
the analyses of this paper include: how the participation of  The product for which the greatest amount of data are
the subjects was arrangécandid versus scheduled testing available is the E-A-R Classic foam earplugsee Table |
and how the attenuation was measufBEAT using large and Fig. 3. There are 16 separate measurements from 11
circumaural earcups versus REAT in a small test bpoth different reports with a total subject count of 633. For 61%
Bergeret al. (1996 in their comprehensive review paper ex- of the 108 possibleé-test comparisons the SF values are
amined these aspects and others, and concluded that withétatistically greater than the RW data, 28% of the time there

RESULTS
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FIG. 1. E-A-R® Classic foam earplug: Mean subject-(8P data from FIG. 3. EP100 earplug: Mean subject-(BF) data from interlaboratory
interlaboratory study and mfg.’s labeled values compared to 16 real-worlétudy and mfg.’'s labeled values compared to five real-world studies. Indi-
studies. Individual real-world studies shown by thin green lines w/out sym-vidual real-world studies shown by thin green lines w/out symbols; bold
bols; bold green line w/out symbols is avg. real-world standard deviationgreen line w/out symbols is avg. real world standard deviation and shading
and shading shows range of real-world data. shows range of real-world data.
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FIG. 2. V-51R earplug: Mean subject-fiSF) data from interlaboratory  FIG. 4. UF-1 earmuff: Mean subject-fit dat@F from interlaboratory study
study and mfg.’s labeled values compared to five real-world studies. Indiand mfg.’s labeled values compared to three real-world studies. Individual
vidual real-world studies shown by thin green lines w/out symbols and byreal-world studies shown by thin green lines w/out symbols; bold green line
filled box; bold green line w/out symbols is avg. real-world standard devia-w/out symbols is avg. real world standard deviation and shading shows
tion and shading shows range of real-world data. range of real-world data.

were no significant differences, and only 11% of the time did  There are also five studies of the EP100 earplug, with a
the RW values exceed the SF values. Stated alternatively, itotal subject count of 153. For 67% of the 33 possibtest
89% of the comparisons the SF values equaled or exceed tlemparisons the SF values are greater than the RW data, and
RW data. This can be appreciated visually in Fig. 1, whereirin the remaining 33 of the comparisons there were no differ-
it is clear the SF data represent approximately the uppeences. In no instances did the field values significantly ex-
quartile of the field values. In all cases the MFG data wereceed the SF measurements. For both the V-51R and the
statistically greater than the SF values, and in the figure th&P100, the MFG data significantly exceeded the SF data at
MFG values can be seen to be well outside the range of fieldll frequencies.
data, except at 2 and 4 kHz. With earmuffs, the expectation was that there would be
The data for the remaining two earplugs tell a similarless difference between the lab and field data since there is
story (Tables Il and Ill, and Figs. 2 and,3although the fact less to go wrong with the fitting of earmuffs under field
that fewer field studies are available for examination makegonditions and since there is also less potential for the ex-
it difficult to ascertain whether the SF data represent an upperimenter to “over fit” the earmuff for high attenuation in
per bound, an upper quartile, or some other value. There atbe laboratory setting. However, the reduced variance of the
five studies of the V-51R earplug with a total subject countearmuff data caused smaller measured differences to reach
of 308, although 183 of those subjects were from one studgignificance. There were three separate measurements of the
(Padilla, 1976 who only measured attenuation at 500 Hz, UF-1 earmuffs from two different reports with a total subject
albeit a frequency that has been shown to be an excellembunt of 51, and the values may be found in Table IV and are
indicator of overall protectioriBerger, 1988 For 20% of plotted in Fig. 4. For 33% of the 21 possililéest compari-
the 25 possiblé-test comparisons the SF values were statissons the SF values are greater than the RW data, and in the
tically greater than the RW data, and in the remaining 80%emaining 67% there were no significant differences. In no
there were no significant differences. In no instances did thénstances did the field values significantly exceed the SF
field values significantly exceed the SF measurements. = measurements. As noted with all of the other products, the
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MFG data significantly exceeded the SF data at all frequentor attenuation is, in these authors’ opinion, a reasonable

cies. measure of the suitably of that protocol. This suggests that
the laboratory data arachievable by groups of usens the
IIl. DISCUSSION field, but are not guaranteed. Certainly, sincerely interested

In order to create a procedure that generates .‘Va”d,,and/or highly motivated individual users may exceed these

data, the question of course has to be asked, “Valid Withvalues(and of course others will fall shgrtbut the purpose

respect to what?” In practice, a wide range of HPD attenu-Of such laboratory-based data is to provide a statistical indi-

ation values may be observed in the workplace, from esserfAlon not an absolute guarantee, of what hea_ring conserva-
tially no attenuation at all for devices poorly fitted by un- tionists can expect to attain in an overall hearing conserva-

trained users who incorrectly and inconsistently wear thei|Ilon program. How the mean laboratory datz_i are anUSted by
HPDs, to much higher levels of protection that may be obthe subtraction of one or more standard deviations in order to

0, 0, i
tained under ideal conditions in workplaces with the mostreﬂeCt what 84%, or 98%, or some other proportion of the

successful hearing conservation programs. It makes no sendg8®rs will achieve, is up to those who regulate safety or who

to excessively derate hearing protector performance to est\mpliggem programs based on these daerger and Roys-
mate worst-case attenuation values, since worst-case values’ W'tr? .th' di ion in mind. th its of th |
are much more heavily influenced by factors other than the : IS discussion in mind, the results otne analyses

hearing protectors themselves, such as substantial misuse Q)rp\:'d? j_tro?_g SL;ppOI’t forfthe _u?e ofUSg dlat;" a?d abstror:jg
products. Neither is it appropriate to utilize optimum contraindication for use of existing 1.>. laboratory-base

laboratory-fit values to estimate field performance, sinceteSt data for the estir_nation of ﬁ.EId performance. The SF. data
such laboratory-based values are in essence estimates of iq}—é@re shown to provide essentially an upper-hound estimate

alized protection obtained under pristine conditions and/o or the premolded earplugs and the earmuff, and something

. : . closer to an upper-quartile estimate for the foam earplug.
erformance attained by unusually well-trained and moti-< ; . .
\F/)ated users y y One could argue that the SF data provide too high a predic-

In developing a procedure to estimate field performancet'on of RW attenuation, but certainly not one that is too low.

the decision was made by the Working Group to attempt tJ—|ov§/ever, Wi.th the precision thaF is available in subjective
approximate “achievable” results. Such results were deﬁne(i'aStIng of this nature, the Working Group agreed that the

: : - appropriate balance between over- and underestimation of
as among the higher values of attenuation attainegrbyps _ .
of informed users in well-managed industrial and miIitaryfleld performance had been achieved. The MFG data, based

hearing conservation programs. The validity of the estimate&" EPA-required testing using the 1974 standard were shown

was assessed and substantiated by the analyses in this repg?t,always significantly exceed SF data, and 1o also always

and by prior analyse€ranks and Casali, 1993 exceeq field performance data by a substantial amount..
Id)é:flly the a{)prg;ch to reduction of Iaslaz)oratory Versus It is concluded that the data that results from the subject-

real-world discrepancies would be to improve field perfor-flt method of Working Group 11, as implemented in the re-

mance to match laboratory data, keeping in mind that unde‘?ently approved standard $12.6-1997, provide an improved

no circumstances can one hope to duplicate optimum Iaboe_stimate of the field performance of HPDs. Furthermore, this

ratory data for groups of users under field conditions. Re_est}mate repre_sents the upper range of qttenuanon values
hich are achievable by groups of users in well-managed

gardless, most agree that industrial hearing conservatioll . . . - .
practice must be enhanced so that better real-world HPlﬁnd well-supervised industrial and military hearing conserva-
performance can be realizéBerger, 1992 However, it is tion programs.

also clear that a laboratory method of measuring hearing pro-

tector attenuation that yields data which more closely corre-

late with existing, or even potential field performance, wouldACKNOWLEDGMENTS
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Acoustic scattering on an elastic plate described by the
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It is shown that the known solution of the acoustic scattering problem on a supported elastic plate,
described by the Timoshenko model, should be corrected. The general formulation of the contact
conditions that imply the reciprocity principle is given. Sommerfeld’s formula and the “optical”
theorem for the model are formulated. They lead to the uniqueness of the solution. The numerical
comparison of the effective cross section of scattering from supported elastic plate described by the
Kirchhoff and by the Timoshenko models is presented. 1@98 Acoustical Society of America.
[S0001-496628)04201-5

PACS numbers: 43.20.Bi, 43.20.Tb, 43.40.Dx, 43.40AjIN]

INTRODUCTION the contact conditions on an arbitrary body attached to the
late that imply the reciprocity principle. In particular we
(gresent correct contact conditions for pointwise non-

infinite elasnc_: p!ate. IS a squegt .Of regular interstThe homogeneity. We prove the uniqueness of the solution based
reason for this lies in the simplicity of the formulas for the , o
on Sommerfeld’s formufd and the “optical” theorem for

zcr:attzri(segriEﬁlt?o,nwgg\?vgel\;le d?ﬁ(ll:::,fltsactgﬁeﬁgal)éﬁ;nfr?;ltshesinf_he model. The last two results are known for the Kirchhoff
gy 9 ' pmodel(see Refs. 11 and 12-14, respectiyehnd are refor-

porting ribs and other pointwise non-homogeneities appear . : ;
to be very important in increasing the energy scattered fron?nu'?ted n th'.s paper for the T|.moshenko merI. Sommer-
an elastic plate. Many distinguished specialists were in-eld s formula is of independent interest for the inverse prob-

volved in the analysis of scattering effects from supportedems of finding the parameters of the scattering obstacle. The

elastic plates. Reference 1 contains the detailed review of the?Ptical” theorem serves as the identity for independent
results published up to 1982. In particular, the heavy fluig®@ntrol of computations. _
loading limit is discussed. Recent efforts in the area required  11iS Paper is closely connected with Ref. 15 where the
rather advanced mathematical methods to be used. The tigen-oscillations of a liquid in a bounded cavity with an
fects of varying junction conditions were considered byel-astic plate on the boundary are discussed. In Ref. 15 both
Guo? The scattering on a periodically supported plate liesKirchhoff and Timoshenko models of the plate are used. The
beyond the topic of this paper, and we mention only a fewproblem is reduced to a Fredholm type equation with a self-
results. The scattering from an orthogonally supported plat@djoint operator. The reason for self-adjointness lies in the
was examined in Refs. 3 and 4. The influence of the surfacgeorrect contact conditions. Other than correct contact condi-
of the supporting ribs was analyzed in Ref. 5. The influencdions would lead to a non-self-adjoint operator and complex
of irregularity in location of ribs and their parameters wasfundamental frequencies which are unacceptable for a physi-
studied by Photiadi&.The scattering from two semi-infinite cal model without damping.
plates with a support was analyzed by Rebinsky and Nérris. ~ The problem of scattering from a plate reinforced by a
In those papers the Kirchhoff model of the plate is ac-set of ribs is considered in Ref. 16. The statement of the
cepted. This model is valid if the wave thickness of the platéboundary value problem there is mathematically correct and
kh is small. The consideration of moderate, but not smalithe amplitude of the scattered field appears to be symmetric
values ofkh requires the Timoshenko model to be ugsee  with respect to the angles of incidence and observation.
Refs. 8 and 8 In this paper we show that the formulas and However, only force impedances of ribs are taken into ac-
even the statement of the boundary value problems in Refs. &unt. Our numerical calculations show that at high frequen-
and 9 contradict the reciprocity principle and should be corcies moment impedance plays an important role in the pro-
rected. The correction deals with the description of the junceess of scattering.
tion of the rib and plate. We give the general formulation of ~ The paper is organized as follows. In Sec. | the model is
described and auxiliary representations for Green’s function
3E-mail address: ivan.andronov@pobox.spbu.ru are given. In Sec. Il the scattering on an elastic plate with an
DE-mail address: bbelinsk@cecasun.utc.edu arbitrary compact inhomogeneit{poundary value problem

The 2-D problem of acoustic scattering by a supporte
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is considered. The representation for the solution of the g4 d? ap(x,0) d?

boundary value problem is derived by means of Green’s sei—m tRige Tt Fz) oy + ( Fs—F3 W) p(x,0)=0.
ond formula. The asymptotic expansion of this formula al- (5)
lows Sommerfeld’s formula to be found, i.e., the representa-

tion of the scattered field in terms of the scattering amplitudd1€"® conve.nient notations similar to those introduced in Ref.
and its analytic continuation. In Sec. IIl the general form of8 are used:

contact conditions is given. The “optical” theorem for the 2 h3w?2 2
, ) po®  phiw 4 pow
model is formulated. Sommerfeld’s formula and “optical” Fi=—<~+—5—, Fo=—ky(l—¢), Fz=—>5—,
. - . kG 12D xk“Gh
theorem imply the uniqueness of the solution for the cor-
rectly formulated boundary value problem. In Sec. IV the ph?w?

solution of the scattering problem on a supported plate is Fs=v(1-eg), E= 12:2G"

presented. In contrast with Ref. 8, the scattering amplitude

appears to be a symmetric function of the angles of incidencéhe wave numbek, and parameter above are the same as
and observation. The amplitudes of the surface waves traJyd the Kirchhoff theory:
eling along the plate are found by means of the analytic hw?

) = . . 4 Pho pow
continuation of the scattering amplitude for complex ko= , =
anglest’” Numerical results are presented in Sec. V. The D D
analysis of the scattered energy distribution between differtetting F;=F;=0 ande=0, i.e.,F,= —kj andFs=», the

ent channels is given. boundary condition of the Kirchhoff model appears instead
of (5). For the systenf2) and(3), this corresponds to taking
the limit as
I. TIMOSHENKO MODEL 3 2
2
Consider harmonic oscillations of a semi-infinite fluid k“Gh—+ and 12 —0. ©®)

space{—o<x<w, 0<y<w} with an elastic plate on its , )
boundary{ — < x<c,y=0}. The factore~ ! describes the Let G(r,ry) be Green's function of the model

time dependence and is omitted. The acoustic pressure satld-= (%,¥).To=(Xo,o)). It satisfies the Helmholtz equation
fies the Helmholtz equation (1) with the Dirac delta function on the right-hand side and

o the (homogeneoyshoundary conditiorts). Let £5(x,ro) and
(V2+k%)p=0, (D ye(x,rg) be the corresponding fields of displacements and
with the wave numbek= w/c, wherec is the fluid sound angles. The formulas for these fields can be easily found by
speed. The behavior of the plate is modeled by the TimoshMeans of the Fourier transform

enko theory(e.g., see Ref. 18It means that shear deforma- 1 '
tion and rotatory inertia are taken into consideration. Thus, G(r,ro)=— yp f gl r(x=x0)| @~ r(wly=yol
the thickness of the plate is assumed to be not small com- i Y(r)
pared to the modal wavelength of the highest frequency of *(uw) O yo)
interest. This model requires the consideration of two func- + () e~ Yyt )dM, (7)
tions: the plate displacemegfx) in they direction and the
angle (x) between the tangent line to the plate and xhe 1 Fs+Fau? (= X0) = Y)Y
axis. These functions satisfy the following equatigpgme €6(X.ro)= 27pow? f () ey ed
denotes derivation with respect xo: (8)
Dy — k’Gh(&' + )+ phoo” =0 (2 _ j K iw(x=xg) = ¥(n)¥od 9
12 ’ Ye(Xilo) =55 ) € 7% 9
K?’Gh(&"+ ')+ phw?£=p(x,0). (3)  Here the Fourier symbdi(x) of the boundary operatdb)
HereD is the bending stiffness of the plat, is the shear and an auxiliary function* () are introduced as follows:
modulus,p is the density of the_material aﬂdis the thigk— ()= (pu*—Fiu2+Fy) y( ) — (Fg+ Fau?),
ness of the plate. The parametentroduced in(2) and(3) is
the shear correction factor usually taken equakt612. The I* (p)=(u*=Fiu®+F) y(u) + (Fs+Fau?),
acoustic pressur@(x,0) plays in(3) the role of external
force applied to the plate. The displacement is related to the Y(m)=vu -k
pressure by the continuity condition The functiony(w) is defined on the complex plane cut along
ap(x,0) the vertical lines{u=k+i7} and {u=k—i7}, 7e[0®),
pow2é(X)= : , (4) and y(u) >0 for u>k. The path of integration i7)—(9) is
y shown in Fig. 1a). It coincides with the reak-axis except
wherep, is the density of the fluid. for small neighborhoods of the real zeros of the symbpl)

Equations(2), (3), and(4) allow us to exclude the func- and the pointsu= *k. These points are avoided in accor-
tions ¢ and ¢ and to formulate the boundary condition in dance with the limiting absorption principle. One introduces
terms of pressure onf a small imaginary part ok, so that Imk>0. Then the zeros
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I 3 The method of steepest descent for the integhayields
the asymptotic representation for Green’s function at large
distances from the source

27
N T G(r.ro) =\ g € W (g)+olr )
asr—o, 0<e<m, (12

G(r,ro)=Age"#o*7rkolY+ (1) as x—*o. (13

The asymptotic formul&l2) represents the field as the radial
@) distancer —o and the angle of observatignis fixed. The
asymptotic formula13) represents the field as the distance
along the platex— =0 and they coordinate is fixed. The far
field scattering geometry is presented on Fig. 2.

The scattering amplitud® ¢ of the outgoing cylindrical
wave is given by the formula

Im A

0 ¢ Rea P (QD r ):ie—ikxo cos<p(e—iky0 sin ¢
GO A
L +.7(p)eYosine), (14)
Here.7 is the coefficient of reflection from a homogeneous
infinite plate
) , I*(k cosg) L*(¢)
)= Tk =~ Tio) (15
FIG. 1. Paths of integration. (k cose) (¢)
L(@)=ik sin ¢(k* co ¢—Fk? cog ¢+F,)
of the symboll(w) shift frlom thel real axis ofu into the +(Fg+F3k? cof o), (16)
complex plane and the integration contour can be taken
along the real axis. The limit procedure as km0 requires L*(@)=ik sin ¢(k* cod ¢—F k% cog ¢+F,)

deforming the contour to avoid the singularities.

_ 2
The dispersion equation (Fs+F3k? cos o).

The amplitudes of two surface waves traveling to the right

H(n)=0 (10 and to the left from the source are
can be rewritten as a fifth order algebraic equation for . 2
_ .2 : : - . i(FstFaug) _.
s=u*. Its analysis shows that <1, there exists only one AG=— F—————e"roX0 Y(kolYo, (17
positive roots=sy. That is, only one pair of real roots of I (10) ¥(1e0)
(10) exists. Fors>1 there could appear extra real roots, butThe following asymptotic representations can be easily
we restrict our derivations in this paper to the case found by using(13), (17), and boundary condition&)—(4):
e<l. (11 éa(X,ro)=Bge™'#0*+0(1), 18)
(Note, the second mode in the isolated Timoshenko plate Ya(X,Fo)=Cae 0%+ 0(1) as x— +x
appears ag>1.) Let the positive root of the dispersion Gimro ¢ o
equation be denoted a& . This root is the wave number of Here
the surface wave that propagates along the plate and expo- = + + +
Do ont S ection PO BE=KIAG, CE=KAG, (19

nentially decreases in the orthogonal direction.
constantK; andK, depend on the parameters of the model
only, and their precise values are not needed below.

The substitutionu=Kk cose« in the formula(7) leads to
the following representation for Green'’s function:

G(r,rg)=— fce”‘r COte= NP (o ro)der, for y>yq

(20

(see Ref. 11 for the details of derivation in case of the Kirch-
hoff mode). This is the so-called Sommerfeld’s formdfa.
The path of integratioi© coincides with the standard Som-
FIG. 2. Scattering far field geometry. merfeld contoul® (w—io,7)U(7,0)U(0i») except for
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’ B =KiAT, CJ=KuAS, (27)

where constant&,; and K, are the same as ifll9). The
scattering amplitudeV; and the amplitude#\; of surface
waves are not known beforehand. Their determination and
analysis represent the main problem of the scattering theory.
The physical meaning of the radiation conditions is the
& separation of those solutions which carry no energy from
infinity. It is sufficient to assume that the scattering ampli-
tude W, in (24) belongs td_,(0,7). However, after the scat-

FIG. 3. Geometry of the problem of scattering and don@jq . tering amplitude is found, it can be proved to be an analytic
function.
small neighborhoods of the pointse. such that In this section the structure of the scattered field is dis-

k cosa. == u, [see Fig. 1b)]. Those points are the poles of cussed. Sommerfeld’s formula for it is derived and the scat-
Ws(a,-) and are avoided from the right and from the left tering amplitude is analyzed.

correspondingly. Therefore Sommerfeld’s formu20) as- LetT be an auxiliary smooth path that starts at the point
sumes analytic continuation of the scattering amplit(®  (—%0,0) and ends at the poink{,0) on the plate and be-
for complex angles. It appears in particular that longs to the upper half plangy>0} (see Fig. 3. Let the
. i scatterer be below. Further, letQ g denote the domain
Ag=7+2mi Res¥g(a,-) (21)  pounded by I', the plate, and semicirclel'g={r

a=a+

=R,0=s¢p=<m} of sufficiently large radiusR. Supposer
(see Ref. 17 for the details of derivation in case of the Kirch-e Qg . Applying Green’s second formula to the functions
hoff mode). Therefore the amplitudes of the surface wavespy(r) andG(r,r) in the domainQg - yields

can be found if the scattering amplitude is kno{for com-

J aps(r

plex angles ps<ro)=f (—ps<r>—+ Pel ))Gu,ro)ds

It is important to note that the formulg80) and (14) r an - dJn
can be differentiated by andy. In particular that allows one . 9 apr)
to find Sommerfeld’s formulas foég and . The corre- +Rf (ps(r)—— Ps )G(f,fo)h—Rd@
sponding scattering amplitudes are 0 ar ar

~1 ksing f ( J r?ps(r))
v ——— + —py(r) = +
f((PIXO) 2’7Tp0(1)2 L((P) R>‘X‘>X0 ps( )ay ay
X (F5+F3k? cos g)e™kxocose, (22) X G(x,01 o) dx. (28)

i k®sing cose Here n is the outer unit normal td'. The third integral is
e

V(@ %o0) = 2mD L(o) Ko cos¢, (23 simplified by using the continuity conditiof@#) and integrat-
ing by parts with the help of the boundary conditidg@sand
Il. SOMMERFELD'S FORMULA 3

Consider now the scattering on a plate with a scatterePs(To)
Q, (see Fig. 3 that occupies a finite domain. In this section g apyr)
we derive fundamental relations for the scattered field such =f ( —ps(r) —=+
that the particular type of the scatterer is not important. Some r on

o )G(r,ro)ds

examples of particular scatterers are presented in Sec. Il - aps(r)

The total acoustic pressupr) is the sum of the incident +Rf (ps(f)ﬁ— g G(r,ro)|,—rde

wave p;, reflected wavep,, which appears in the problem 0

without scatterer, and scattered figld. The asymptotic rep- — o2 (£ X)F(G(X,F o))+ hs(X)M(G(X,r))

resentation$12), (13) and(18), (19) allow the radiation con-

ditions for the scattered fields to be formulated: —M(ps(X)a(X,F0) — F(Ps(x)éc(X,To)) (| "R+ [3)-
ps(r)= \/i—f eI () +o(r 1) 29

Here the displacements and angles), are generated by the
(24) scattered fielgps. The quantitieg andyg are generated by
Green’s functionsee(8) and(9)). The operator§ andM in

pe(r)=AZ g™ #ox~ V=K o(1) as x—*wx, (25 (29) are defined by the formulas

as r—ow, 0<e<m,

fS(X):B;:eii'U“ox'i‘O(l), lﬂS(X):Csieii’uox'f‘O(l) F(p):_Kth(gl"‘lﬂ), M(p):_Dlﬁ, (30)
o 26 Note, the expressiof(p) in (30) represents the force and
as X—=c. (26 the expressioM (p) represents the moment applied to the

Here plate!® By taking the limit (6) the formulas(30) reduce to
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the expressions for the force and moment for the Kirchhofimula topy(r) andG(r,ro) in the domainQ bounded byl

model.

The radiation condition§12), (13) and(24), (25) allow
us to check that the integral along the large ar¢€29) van-
ishes alR— . The radiation condition&l8), (19) and (26),
(27) allow us to check that the substitutions»at =R in
(29) vanish asR—. Finally the following representation
for the scattered field appears:

ps(ro):fr<

+po@?(£(X)F(G(X,r0))+ ¢hs(X)M(G(x,Fo))
—M(ps(X)) hs(X,ro) — F(DS(X))§G(X,r0))|i°XO.
(31

g  dps(r)
_pS(r)o"_n+ an

G(r,rg)ds

and the plate. Indeedy is located outsid€) and the simi-
lar derivations as above yield

Jd d
J [ ~patry g+ 220

0= G(r,rg)ds

an an
+pow?(£5(X)F(G(X, )+ ¢hg(X)M(G(X,To))
—M(pg(X))¢a(X,ro) = F(pg(X))SG(X,I’o))KOXO.

Adding this identity term by term to the formul@1) and
combining the fieldg, andp yields the representatidi33)
with the total fieldp(r) on the right-hand side.

Analysis of the formula(33) shows that the scattering
amplitude V(@) preserves the analytic properties of the
scattering amplitudeV (¢, ) (see Sec.)l Therefore the
scattering amplitude is a meromorphic function of the com-

This representation is valid for any field that satisfies theplex angleg, it has simple poles that coincide with the zeros

Helmholtz equatior(1), boundary condition$2) and (3) on
the plate outsidéd’, and radiation condition&4)—(27).

of the dispersion equatioh(k cos¢)=0, and the identity
similar to (21) is valid:

Substituting the representation for Green’s function

from (20) and similar formulas for the functiong; and g

A =727 ResWy(a,-).

(34

a=a

and changing the order of integration yields Sommerfeld’s *

formula for the fieldpg(rg):

pun)=— [ e e (yde @2
J Ips
wior= [ [~ e P20 fwgionds

+pow?(Es(X)F(¥g(¢,X))
+ Y OM (¥ 5(0,X) =M (Pps(X))V 4 (@,X)

~F(ps0)W (0.0, . (33
Here the action of the operatoFsand M on the scattering
amplitudeW (¢,x) is defined as in(30):

F(W (X)) =~ k2Gh(¥ {(0,X) + ¥ (¢,X),
M(¥o(@,x))=—~DW}(e%),

and the scattering amplituddss , W, andW,, are defined in
(14), (22), and(23).

The formulas(32) and (33) are valid for y>max{y.y
eT').!! Below this level, the field(r) can be prolonged as
a solution of the Helmholtz equatiofd). The possibility to
use the formula32) below this level is related to the well
known Rayleigh hypothesiS.If the scatterer is located com-
pletely above or on the plate, then the cufvin (31) can be

taken as the boundary of the scatterer. For the scatterers th
are located completely below or on the plate, the formulas

(32) and (33) are valid for anyy>0. The curvel for that
case can be taken as a segmentunion of segmenjon the
line y=0. Note that Green'’s functiofv) is not defined for
y<0. Generally speaking, that prohibifsto be belowy=0.
The geometrical part of the fielgy(r)=p;(r)+p.(r)
when substituted into the right-hand side(88) gives zero.

This can be easily shown by applying Green'’s second for-
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Let ® be any subinterval of0,7). Analyticity of ¥ (¢)
implies that if the scattering amplitudg, is equal to zero on
@, then it is identically equal to zero. Sommerfeld’'s formula
(32) implies then that the fiel@¢(r) is identically zero. This
result will be used below in Sec. Ill.

lll. “OPTICAL” THEOREM

In the previous section the scatterer and the boundary
conditions on its surface were not specified. In this section
the set of possible contact conditions for the Timoshenko
model is described. It is shown that with those conditions,
the scattering problem has a unique solution. In particular,
the conditions on the rib correct the conditions used in Refs.
8 and 9.

We first give the brief derivation of the “optical” theo-
rem (see Refs. 12—14 for the details of derivation in case of
the Kirchhoff model. Let the incident field be a plane wave

pi(r)=expikx cos g—iky sin ¢g). (35

The reflected wave then is also the plane wave
P, (r)=.72(¢pg)exp(ikx cos ¢q+iky sin ¢gp),

where.%(¢g) is the reflection coefficientl5). Let (+Xxg,0)
be the end points of the cuni&(see Sec. )l Apply Green’s
second formula to the field(r) and its complex conjugate

%{r) in the domainQlg . Then letR— and separate the
maginary part. The derivation is similar to that in Sec. I,
except that the integral over large arc and the substitutions at
the points (£ R,0) do not vanish. The following identity ap-
pears:

4 — _277 m )
~ i Re(A(00) W (o)) =~ fo |W(¢)|°de
+Q(AT|2+|AT|?) +E,
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1 2 — — ap(s)
E=7Im f p 2 ds+ 2 im(F(p) E+M(P) I, p(s) o
Ko rman Tk ’ F(p(-a))
(36 M(p(-a)) | =z| &~ (39
F(p(a)) w~a)
Here &(a)
M(p(a))
) P(a)
Yol (o) . . . .
Q= —2k(F5+F3,u(2)) . Here Z is the matrix operator that characterizes the interac-

tion of the oscillations of the bod§2 and the platésee Refs.
5 and 20 for particular cases of conditioi®®) for a body of

All the terms in(36) have explicit physical meaning of f|n|t§ mas% I;the body is |r_1f|n|t;:Iy Teavy, g can be consw}!_— d
energies normalized by the density of energy in the incidenE"©d @s a body not contacting the plate and two separate fixe

plane wave. If there is no scattered field, all the energy that igomts on the plate. The matrix operator in such a case splits

brought by the incident wave is carried away by the reflectedto tWo blocks, and the conditiof89) can be rewritten in

wave. If there is a scattered field, then some energy is takeﬁji1e form of two conditions:
from the reflected wave. The left-hand side(86) expresses ap(s)

It is important to note that the quantity is positive.

this energy. The first term on the right-hand side expresses  P(S)=Zq(s) — — (40)
the energy that is carried away by the cylindrical wé24).

The second term gives the energy of the surface waves. 8n 9Q, and

combines the energies carried over by the acoustic waves

(25) and the elastic wave6) in the plate. The last term is F(p) ) -7 ( 5) (41)
the energy absorbed or irradiated in the domain bounded by |\ M(pP) “\y

the curvel'. If the scatterer represents a combination of bod-;;  — + 5 Here Z,, is proportional to the acoustic imped-

ies attached to the plate or located separately, inhomogeng: -« of the surfacé(,, the matriceZ, andZ_ are pro-
ities in the platgcracks, ribs, segments with different param- portional to the impedance matrices of the junctions at the

eterg, open resonators below the plate, etc., the en&rgy

pointsx=a andx= —a.

the sum of energies absorbed or irradiated by each of these 11,4 two terms in(37) are non-negative if

bodies, inhomogeneities, and resonators.
The identity(36) describes the balance of energy in the

Im Z(s)=0

system. If there are no active sources of energy in any finite
domain, the natural restriction on the system is non-

negativity of all the terms on the right-hand side(86). Let
the scatterer consist of a body attached to the plate on a
segment -a,a), a point crack ak=x,, and a point rib at
X=X, (see Fig. 3. Let 4Q be the boundary of the body and
dQ be the part ob() which contacts fluid. The contolitin
(36) can be chosen d5= 904U S, (x1) US,(X,) with e—0,
whereS,(x,,) is the semicircle of the radiuswith the center
at (x,,0),n=1,2. In this case the enerdy can be expressed
as

E=E0+E1+E2,
1 ap pow’
=— —ds+
Eg K Im mop n ds ”

XIm(F(p) € +M(p) )2 ,, (37)

Po

(1)2 J— _
Ej="1 IM[F(P) E+M(P)Y],, j=12

(38)

Here and below f], denotes the jump of functioh at the
point x.
The energyE, is associated with the body. The inte-

ImZu=0, ImZ.=0.

The last inequality for the matrices.. is known as the con-
dition of the passive four-pole network. The particular case
of Zo=0 orZ,= lead to the Dirichlet or Neumann bound-
ary conditions orv(),. Then the integral ove#(), in (37)
disappears, i.e., the body does not accept the energy.

In the formulas(38) for the energies of the crack and
pointwise rib, the integrals oves, are not presented due to
the Meixner conditions that are included in the formulation
of the boundary value problem at the pointsd,0), (x;,0),
(x5,0), and all the points 0f(}; where the smoothness of
the boundary is violated or the impedangg(s) is discon-
tinuous.

The energyE; that is absorbed by the crack is zero due

to the contact conditions of free edges
F(p)=0, M(p)=0, x=x;*0.

The conditions on the rib can be taken in the most gen-
eral form similar to(41):

([F(p)])zzr ¢

X:X2.

[M(p)] P

gral overdQ) represents the energy absorbed by the surfac&hese conditions involve an impedance ma#ix(see Sec.

of the body and the substitutions at = a describe the en-

ergy of interaction of the body and the plate vibrations.
Consider the followingmost general linearconditions:

I. V. And

678  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998

IV below). The displacemenr§ and the angle’ are supposed
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The formula(36) for the correctly stated boundary value transform?? Here the final formulas for the scattering ampli-
problem expresses the “optical” theorefsee Ref. 12 Itis  tude V¥ are presented only. For the special case of the plane
usually written in the form of two expressions for the effec- incident wave(35), the scattering amplitude is given by the
tive cross section formula

2=—4—WR6(J’?(¢0)‘1’(¢0)), ‘I’(¢,¢o)=i—m{mm(¢)m(¢o)
k 7 L(¢)L(@o)
— 7mk? COS @ COS @} (44)
HereL(¢) is defined in(16),
m(¢)=Fs+F3k? cog o,

2\ -1
Pow

ﬂf:(FsDo_FsDz_—Z ) )
f

2 T
3= [TwolderUarp+a ) e

2

d
pds

El ImZ
MZs| In

"k Ja

L)

x=a -1

Dyt Fa Dyt FyBot =
2 SEO 302_

77 :V L

_P0w2|m<z (é)(§)> " m

k AL 2N . and the following contact integrals are introduced:

2 CN
Po® £\ (¢ 1 () (ip) .

+ Im<Zr )( )> . (42 Di=5= | — 77— —du, j=0.2,

k oIl 2w ) 1w @5

The “optical” theorem(42) serves as the universal in- :i f du
dependent control of accuracy of computations which to- o 2m I(w)”

gether with internal control of convergence is often iNCOrpo-rpq paths of integration are the same ag7n-(9).

rated in the_ numerical_ procedufe.g., see Refs. 5 and 1 . Note, lettingZ,,= 0 yields the formula presented in Ref.
The numerical results in Sec. V are checked by means of thise - < it \was mentioned in Sec. I for the Kirchhoff model

identity. —F __ 1A _

The “optical”’ theorem(42) and Sommerfeld’s formula tolthgi/veﬂ,lfnzown |?gsjll?§gs sgé Lheefsfo;maurlg(;g) comes
(32) allow us to prove the unigueness of the solution. Sup- ' '
pose there exist two different solutiopg andp,. Then their iv k% sin ¢ sin @g 1
difference is the solution of the boundary value problem ¥ (#:90)= - T3 "\ 5 "Bz,
without an incident field. In this case the left-hand side in

2
(36) is zero, and henc& =0. Due to(42) the scattering _ k“ cos¢ coseg (46)
amplitude is identically zero. Sommerfeld’'s formu(82) D,+D/Z,
yields p; —p,=0. Thus the solution is unique. H

ere

In Refs. 8 and 9 the contact conditions at supporting ribs
are taken using the formal analogy with those for the Kirch-  Ly(@)=ik sin ¢(k* cos*¢—kg)+ v.
hoff model. The mistake in the expression for thﬁ for_ce ?nd The identity(34) yields the formulas for the amplitudes
moment(see(30)) leads to a model, for which the “optical .

. . ... of the surface waves:

and uniqueness theorems are not valid. Though the differ-
ence in computed scattering characteristics is not large, we . k sin goox/,uﬁ—kz )
believe there is no use to compare the numerical results pre- A_(‘Po)ZZ—L(%N " itg) {ni(Fs+Faug)m(¢o)
sented in the next Section with those of Refs. 8 and 9 not
satisfying the energy conservation law. + 7mK €OS @ouo}- (47)

For the case of the incident surface wave

_ ; 2_ 12
i=exp(i moX— Vug—Kky), 48
Consider now the scattering from a plate supported by a P q Ho _ Ho y) 48
pointwise rib and correct the results of Ref. 8. The rib isthe scattering amplitude can be expressed as follows:

IV. SCATTERING FROM A SUPPORTED PLATE

supposed to be on the opposite side from fluid. The contact . 7z 2
conditions that describe the scatterer are taken in the form V(p)= i ksin ¢ Vpo—k {n+(Fs
27 L(¢)(Fs+F3k? cos o)
[F(P]=2Z:&,  [M(p)]=Zmi. (43 CE y 40
Here the force and moment impedances depend on the mass 3#0)M(¢) ~ 7imk COS @hto}- 49
M and rotatory inertid per unit length of the rib It should be noted that the scattering amplit¢dé) satisfies

the reciprocity principle, i.e., is symmetric with respect to the

angle of incidencepy and the angle of observation The
The exact solution of the boundary value problébr  result of Ref. 8 based on the wrong contact conditions vio-

(4) and (43) can be constructed by means of the Fourierlates the energy conservation law and the reciprocity prin-

Zi=Mw?, Zp,=Jw’
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ciple. Note also the symmetry between the expres&iah OHz 10kHz  20kHz 30kHz
for the amplitudes of the surface waves and the expression i :

(49) for the scattering amplitude. This symmetry represents
the reciprocity between different channels of scattering.

V. NUMERICAL RESULTS

This section presents numerical results on acoustic scat-
tering from an elastic plate supported by a pointwise rib of
rigidity. Both the Kirchhoff and the Timoshenko models are
used and the characteristics of scattering are compared.

The explicit formulag44) and(46) for the amplitude of
the scattered field contain special integrBlgj=0,2) and
B, [see (45)]. These integrals converge slowly and their
regularizatio? is necessary. However, they can be reduced @)
to sums of residues of auxiliary functions at the zeros of the 0Hz 10kHz 20kHz 30kHz
denominator (1) (see Ref. 22 for contact integrals in the T : : =
Kirchhoff theory. Thus the computational problems are re-
duced to finding all zeros of the fifth degree polynomial

Ps(S)= (5~ F15+F5)%(s— k) — (Fs+F39)2  (50)

in the complex plane o§= u?.
The control of accuracy of computations is based on the
identities for the integrals

Dl:DSZO, D3:1

The integralsD; and D5 are understood as the following
limits. First, the exponentia'“* with x>0 is introduced in
(45 and the path of integration is moved into the upper
half-plane of . Then the limit fork— +0 is taken as the
value of the integral. (b)

Besides that control, _the final results for thg scatteringFIG 4. (&lDependencieE (f ) for steel plate in waterpy=45°, h=1 cm
amplitude are checked with the help of the “optl_cal” theo- andlvvl=1cm.p(a) H=1 cm (curve is Shiffed_zo dB); (é.;OH:Z.’S em(shift
rem(42). Ribs that do not absorb energy are considered only, 15 4p): (c) H=5 cm (shift — 10 dB): (d) H=15 cm (shift — 5 dB): and
i.e., E=0 in (42). For all the numerical dependencies pre-(e) H=1m (no shify. (b) Dependencies,(f ) for steel plate in water:
sented in this paper “optical”’ theorem is satisfied to within ¢,=45°, h=1cm, and H=1cm, (@ W=25cm (curve is shifted
0.001%. —20dB); (b) W=5 cm (shift — 15 dB); (c) W= 15 cm(shift —10 dB); (d)

The main characteristic used for the comparison of théN= 50 cm(shift =5 dB); (&) W=1m (no shif.
models is the effective cross secti@n This quantity is de-
fined as the ratio of the energy carried to infinity by thequencies, the force impedance determines the process of
scattered field to the energy concentrated on the unit lengtbcattering. At high frequencies, the moment impedance be-
of the incident wave front. On the figures the logarithmic comes more significant.
scale is used; that is, the effective cross section is expressed Figure 6 presents the angular dependence of the effec-
in dB. Figure 4 corresponds to a steel plate in water suptive cross-section at the frequency of 20 kHz for the same
ported by the ribs of different width and height. The curvesribs as in Fig. 4a). These curves show that the maximum
computed for the Timoshenko model are given by thin linedifference appears for the angle of incidence of about 20°.
and the curves for the Kirchhoff model are marked with bold Figure 7 describes the distribution of the scattered en-
dots. The results in Fig.(d) are given for the rib oriented ergy between the channels of scattering. The ratio of the
perpendicularly to the plate, that is, its heigthis larger than  energy carried away by the surface waves to the total scat-
its width W, whereas the results in Fig(l) are given for the tered energy is plotted. The coincidence frequefigyat
ribs oriented parallel to the plateHW). The difference  which the phase velocities of the flexural waves in an iso-
between the effective cross-sections computed for the Kirchlated plate and the acoustic waves in the fluid coincide plays
hoff and for the Timoshenko models of plate vibrations al-an important role in the processes of scattering. The distri-
most does not depend on the parameters of the rib. Howevebution of energy between the channels of scattering changes
this difference is slightly greater for orthogonal ribs than forsignificantly at this frequency. At low frequencies, most en-
ribs oriented parallel to the plate. ergy is carried away by the surface waves propagating along

The influence of the moment impedartg is shown on  the plate. For a plate in water, the increase of the frequency
Fig. 5. The dependencies of effective cross-section are prdeads to the decrease of this portion to the level of about 75%
sented forM =1 kg/m and different values af. At low fre-  up to the coincidence frequency. For the plates in air, up to

75 ................... ......................
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the coincidence frequency, the portion of energy carried 0° 30° 60° 90°
away by surface waves remains at the level close to 100%. : :
At the coincidence frequency, the balance of energy rear-
ranges, and fof >f the energy is mainly carried away by
the cylindrical wave. This is seen more evidently in Fifh)7
for steel plate in air and in Fig.(@ for plexiglas plate in air.

For the Kirchhoff model, the flexural wave number in
isolated plate is equal t&,, whereas for the Timoshenko
model, this wave number is larger:

F
k= \/?1+ Ki(1—e)+F2A.

This fact causes the difference of coincidence frequerfgies
in the two models. The shift of curves corresponding to the
Kirchhoff and to the Timoshenko models is seen in Fig) 7
for the Plexiglas plate in air when the difference of coinci-
dence frequencies is the largest. FIG. 6. DependencieX(¢,) for steel plate in water at frequengy- 20 Hz.
For the plates in water, the coincidence frequency lies ir&l’(t:)e parameters, W, H and the shifts of curves are the same as in Fig.
the domain ofkh~0.9 where the models of thin platéat '
least the Kirchhoff modglare not valid. For the plates in air, . ) .
this frequency corresponds to smaller valuelof Figure 8 dependencies of the effective cross-section on frequency,
presents the dependence of the effective cross-section for tRg9I€ of incidence, and parameters of the rib. These numeri-
supported steel plate in air. Sharp maxima are noticed 2! results are checked with the help of an “optical” theo-
frequencies of non-specular reflection when the velocity of M- Comparison of the effective cross-section for the Kirch-
the trace of the incident wave on the plate coincides with thd1°ff and Timoshenko models shows that for not high
velocity of flexural wave in isolated plate. Again, these fre-feguencies the discrepancy is small. It can be explained by

guencies are different for the Kirchhoff and for the Timosh-the slight difference in the frequencies of non-specular re-
enko models. flection that these models give.

The advantage of the Timoshenko model is in the much
wider range of parameteffrequency, thicknegsfor which
VI. CONCLUSION the model remains valid. The assumptior 1 accepted in
this paper is an artificial one; Fig. 9 presents the effective

We have derived Sommerfeld’'s formul@2) and “op-
tical” theorem(42) for the acoustic scattering from an elastic
plate described by the Timoshenko theory. These results, be- 0Hz 15kHz  30kHz 45kHz
ing also of independent interest, allow us to prove the 1.0 :
unigueness theorem for the problem of acoustic scattering ]
from a plate with any compact scatterer. In the case of a
pointwise rib, we have corrected the statement of the scatter-
ing problem examined in Ref. 8 and presented numerical

-251

(b)
0Hz 1.51|<Hz 3kHz 4.5kHz

R 3 P ................... ......................

FIG. 5. Dependencie¥ (f ) for steel plate in waterpy,=45°, h=1cm, FIG. 7. Distribution of energya) for steel plate in water(b) for steel plate
M=1kg/m; (@ J=o; (b) J=0.1kgm; (c) J=0.01kgm; (d) in air and(c) for plexiglas plate in airpy=45°, h=1cm, W=1cm, and
J=0.001 kg m; ande) J=0. H=1cm.
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0Hz 1.5kHz 3kHz 4.5kHz high and the conditioifll) is satisfied. As a result, only one

: : ' surface wave propagates along the plate. However, this re-
striction is not crucial for our derivations. If more than one
wave propagates along the plate in each direction, then ad-
ditional terms appear in the “optical” theorefd2).
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The Rayleigh equations for a multi-sinusoidal periodic surface
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It was shown by PurcelJ. Acoust. Soc. Am100, 2919-29361996] that the Rayleigh equations

in the Fourier domain for the reflection coefficients for scattering of a plane wave from a
pressure-release sinusoid are valid if the maximum slope of the sinkisieidD.6627. This current

work finds the corresponding constraint sufficient for the validity of Rayleigh’s equations for a more
general periodic surface consisting of a finite sum of sinusoids. The mathematical basis of the
derivation of the Rayleigh equations from the Helmholtz integral formula is a Fourier series given
by Oberhettinger. Unlike the single sinusoid case developed by Pireédrenced above the
analysis of the general periodic surface given here requires an analytic continuation argument. In
addition, a set of(infinite linean equations of the “second kind” is derived for the reflection
coefficients for the general periodic surface. This guarantees that the truncation solutions for the
reflection coefficients converge and are unique. The matrix elements involved in these equations of
the second kind require the numerical evaluation of a finite intdgraeneralization of Bessel's
integral for the integer index Bessel functigrand all calculations required can be performed by
desktop computing. €1998 Acoustical Society of Amerid&50001-4968)04502-(

PACS numbers: 43.20.Bi, 43.20.Fn, 43.30.H&NN]

INTRODUCTION corrugations is correct if and only Kd=<0.448. Recently,

) ) _ PurcelP used exact results for two generalized Kapteyn sums

The study of scattering of plane waves from a sinusoicyg, rewrite Uretsky’s series expression fef, , in a form that

was initiated some ninety years ago by Lord Rayleigh. immediately leads to the Rayleigh equations in the Fourier
the region above the maximum elevation of the surface, thg,main. Demanding that these Kapteyn sums converge ab-
periodicity of the surface implies that the scattered field is olutely gives the constrain¢d<0.6627. This leads to the
sum over out-going plane waves scattered into discretg, . sion that the Rayleigh equations in the Fourier domain
angles as given by the diffraction grating equation. Raylelghére valid more generally than Rayleigh’s expansion in out-
postulated the same form for the scattered field within the th oing plane waves. An attempt to reconcile the apparent dis-

grooves of the_ surface corrugations, _|_nclud|ng '.{he surfac repancy between these two different constraints is given in
itself. By applying the boundary conditions to this form of .
Fec. VI of this paper.

the scattered field, Rayleigh was able to find an infinite set o On a purely numerical level, solving the Rayleigh equa-
linear equations for the amplitudes of the out-going scattereglons directly(by truncatiod for the R, is much easier than

waves—the reflection coefficient®,. No existence or ) "
m r%Jc[etsky’s procedure of solving for thg, coefficients, then

uniqueness theorems were available for such equations a ing thik itably t i th
the general validity of Rayleigh’s approach was unknown. expressing m as_(sw aply frunca e)_jsums over &n-
The disadvantage is that the Rayleigh equations are only

In 1965, J. L. Uretskyused the Helmholtz integral for- ) s .
K g valid for a sufficiently small surface slope. This would cor-

mula to derive an infinite set of linear equations, with matrix o
elementsv® . for the ¢, coefficients—the Fourier compo- "€SPond to a slope angle of arof@rg6279 ~34° this is still
nents(apart'from a phase factoof the normal derivative of large enough to mcl_uc}e many surfaces of_practlcal |nt.e.rest.
the pressure on the surface. Uretsky expressed the reflectigiP™e well-known difficulties connected with the condition
coefficientsR, as an infinite sum over the, and derived an Number and with proving existence and uniqueness of the
integral formula for the matrix element&. .. From this in-  truncation solutions of the Rayleigh equations are also dis-
tegral formula Uretsky was able to find a series representeussed in Purcefl _ _
tion of the matrixVZ, , consisting of two distinct terms, the This current work is an extension of the results of Ref. 5
first term a sum over Bessel functions and the second terfthe single sinusoid surface=d cosKx)] to the case of a
expressible agan integral overa sum of Weber functions. more general periodic surface consisting of a finite sum of
Combined with his formula expressing the, as sums over Sinusoids in the formz=3).,d, cosKx+w,). It is found
the ¢, this result for\/%,n led Uretsky to concludésee Sec. that for such a composite surface, the Rayleigh equations in
E of Ref. 2 that his results were inconsistent with the Ray-Fourier form are valid provided the maximum slopesd,
leigh equations. This in turn suggested that Rayleigh’s asef the individual sinusoids satisfy a certain non-linear con-
sumption of out-going waves only in the grooves of the sur-straint that can be solved numerically. In any event, the
face roughness was incorrect. slopes of the individual sinusoids may not exceed the single
However, a series of papers by Miffaand Petit and sinusoid limitKd<0.6627. Results for the simplest possible
Cadilhaé established that the Rayleigh assumption of out-extension of the sinusoid case, namef=d cosKx)
going waves only everywhere in the grooves of the surfacetd’ cos(3Kx) (a ripple of periodL/3 superimposed on a si-
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nusoid of period-=2/K), are presented in graphical form. z

In this paper, the mathematical basis of the derivation of incidentplane wave J  scattered waves
the Rayleigh equations is a Fourier series given by Ry
Oberhettingef. Hence the proof of the Rayleigh equations
for the general periodic surface case requires an analytic con- o 00\ 0n
tinuation argument. This is in contrast to the the work in YN T z=8(x)
PurcelP for the single sinusoid, which was based on the /M /\/
Kapteyn sums of the fornt;_,J,,(2nZ)/n*™ given on p. T - > x
558 of Watsorf,and which did not require analytic continu- \/J W W \/
ation arguments. Also a set of linear equations of the “sec-
ond kind” is derived for the reflection coefficien®,, for the
general periodic surface. This guarantees that the truncatiang. 1. Definition of the coordinates for the scattering of a plane wave from
solutions for the reflection coefficients converge and are periodic surface with period. The fluid occupies the half-space
unique. The matrix elements for these equations of the secz €(X) above the pressure-release periodic surface. In the example pictured
ond kind require the numerical evaluation of a generalizatio bzc’\zlizlf €(x)=d; cos€x)+a, cos(Kx), where the surface wave number
of Bessel's integral for the integer index Bessel functions. '

This work concludes that the Rayleigh equations are
valid for composite surfaces consisting of a finite sum ofform p;,.(x,z) = exdik(x cos ¢y—2z sin ¢)], where ¢ is the
sinusoids, provided the slopes are sufficiently small. Suclyrazing angle. The total pressure must satisfy the wave equa-
surfaces have been used by Berfhamd Kachoyan and tion
MacaskilP (using methods applicable to arbitrary slope sur-
faces to model bistatic scattering from the randomly rough » .
cylindrical surfaces. The study of such surfaces, using tech- IX 9z
niques accessible to desktop computing, is the primary mothe houndary condition requires that the total pressure van-
tivation for this current work. The reader should note thatishes on the surface
there is an extensive literature on scattering from periodic
surfaces; this paper cites only a narrow selection of refer- p(x,€(x))=0. 2
ences relevant to the specific technical approach employed ithe radiation condition requires that the scattered field con-
this paper. There are other approaches to analyzing scatteriggt only of out-going waves as— .
from a sinusoid that bypass Uretsky’s integral formula com-  As thex axis is shifted by an amourtt, pj,. is shifted
pletely. For references to the older literature there is the repy the factor exgkL cos¢y). Since the boundary conditions
view by Fortuint® for more recent material see the review by are periodic inx, exp(—ikL cos¢g)p(x,2) must also be peri-

Bishop and Smitit! Periodic surfaces have previously beenodic in x. This leads to the expansion for the pressure in the
investigated by Hill and Cefi? and Van den Berg and form

Fokkemat® In the limit of the single sinusoid case their re-
sults reduce to Millar’s constraii€d<0.448(see Sec. V of
Ref. 13 on the general validity of the Rayleigh expansion
everywhere above the rough surface; in this paper the single .
sinusoid case reduces to the constr&int<0.6627 on Ray- z>Maximum{ e(x)}, )
leigh equations in the Fourier domain. where the diffraction grating equation gives

2 2
a°p(x,2) N I°p(x,2)

+k?p(x,z)=0. 1

o0

P(X,2)=Pinc(X,2)+ 2, Ryelkxeosntzsindn),
n=—co

COS ¢, = COS ¢pg+

N (4)
Generally the notation in this paper will be chosen to beT0 satisfy the radiation condition, choose the square root

consistent with Holfor! and PurcelP Let the periodic sur- such that

face be described by the coordinate system shown in Fig. 1, _. Ny N P

where the fluid occupies the half-space e(x). In this pa- sin gn=|V1=cos ¢nl, +ilV1=cos ¢, ©

per it will be assumed that the periodic surface is given by dor cos$,<1 and cosp,>1 respectively.

finite sum of M sinusoids of the form z=¢(X) From an application of Green’s theorem to the pressure

—>M d, cosKx+w,), where the phase factors<Qw, P(r’) and the Hankel functiohig(k|r—r’|) and by inserting

<2r. The wave number,, of the sinusoids are assumed to the pressure-release boundary conditip(s, e(x)) =0, fol-

be integral multiples of the lowest wavenumber=K i.e.  lows the Helmholtz integral formula

K,=nK. Hence the period of this surfacelis=2#/K. This 1 ap(r’)

is not the most general periodic surface that can be con- p(r)=pinc(r)—m f ds’ o

structed from a finite sum of sinusoids, but it is sufficiently

general to have some interesting applications. For examplehere the integral over the arc lengsh extends over the

such a surface is used by Bermaee Eq(Al) of Ref. §| to infinite surface andh’ is the downward normal. The field

model scattering from a random two-dimensional surface. pointr=(x,z) lies anywhere above the periodic surface and
For simplicity consider an incident plane wave of the the pointr’ =(x’,e(x")) lies on the periodic surface. This is

I. PRELIMINARY THEORY

Hy(klr=r']),  (©
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just Eqg.(21) of Holford. Now define the shorthand notation

for the normal derivative of the pressure on the surface in

terms of they(x) function

i dp(x’,z") ds’
kK on'  dx

el

¢(X’)=(

z'=¢€(x")

ap(x',z") de(x’) ap(x’,z’))
- +
0z’ dx’ ox’

z' =¢€(x")

(@)

o k1o @ o
an:EE dx e’ X COS by dx’ elkx cos ¢y
. 0 .

X Ho(ky(x—x")?+ (e(x) — e(x))?). (14

By introducing the plane wave representation of the
Hankel function one obtains Uretsky’s well-known integral
representation

< [
V?n'n:_;|:2—oo f—mdx

Ci—n(kX)Cp—1(—kX)
X?—sir? ¢,

. (19

Since the normal derivative of the pressure is also periodi¢ollowing Uretsky, the contour is chosen by demanding that
up to a phase factor, it can be decomposed into the Fouriiin ¢ have a positive imaginary part. This expression is the

sum

§o0= 3 asin

n=—o

)

Since the surface is assumed to be periodic with petiod
=2m/K, this gives the Fourier sum

e—iPe(x): z eiKX'Cr(P).

r=—w

9

This can be viewed as the generating function for @je
functions.

Multiplication by the factorfgdx exp(—iKxr)/L gives
the integral definition of th&,(P) functions

1 (L : .
Cr(P): E jo dx e—ler—lPe(x)

1 (= o
E J7 de eflrﬁfng(ﬁ)_ (10)

For convenience define the shorthand notatig(e)
=¢(0/K) i.e. setKx=6 and hencef(6+2m)=£(6). EQ.

(10) can be regarded as a generalization of the Bessel inte

gral definition of the Bessel functions; such functions hav
been previously investigated by Wassilj&ffThe special
casee(x)=d cosKx yields C,(P)=i""J,(P).

Now let the field point approach the surface ire.
=(x,2)—(x,€(x)) and use Meecham’s restfitthat this
limit commutes with the integral to obtain

lfd'
E S

Substitution of Eqs(7), (8) into Eq. (11) yields

aP(r")
on’

HY(K|r=1") == Pine(r). (11)

K >
—n;_w ¥n

f dx’ e oS T(k|r —r']) = — pine(r).
(12

Multiplication of Eqg. (12) by the operatorLflfgdx
X exp(—ikx cos ¢y, gives the form

2 ¥nVimn=—2Cn(k sin ¢o), (13
where

685  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998

e

starting point of this paper; additional details of the interme-
diate steps can be found in Uretsky, Holford, Bishop and
Smith, or Purcell. In addition, by returning to E€), and
assuming that the field poirat lies above the high point of
the surface excursions, Uretsky was able to derive the impor-
tant formula expressing the reflection coefficieRsas a
sum over they, coefficients

o

B Ci—n(k sin ¢)
R'_n;w 2 sin ¢, n:

This is Eq.(27) of Holford.

(16)

Il. THE GENERAL PERIODIC SURFACE

To illustrate the next step required, for the moment re-
turn to the special case of the sinuseik) =d cosKx). In
that case the function€,(kX)=i""J,(k dX). By using
Uretsky’s methodsee AppendixC of Uretsky, Appendix C
of Bishop and Smith or Eq(A2) of Purcelf for detail§
combined with two generalized Kapteyn sufese Eqs(B3)
and(B43) of PurcelP] one may derive a series representation
for V9., [setC,(x)=i""J,(dx) in Eq. (25)] which when
Substituted into Eq(13) immediately gives the Rayleigh
equations.

The same conclusiofthat Uretsky’'s formula Eq(15)
leads to the Rayleigh equatignisolds for the general peri-
odic surface, although the details of the proof must be modi-
fied. The proof depends on using a Fourier series and an
analytic continuation argument. In the sinusoid case, the for-
mulae given in Eqs(B3) and (B43) of Purcelf did not re-
quire analytic continuation but so far this seems necessary
for the general periodic surface.

From the integral definition of Eq10)

Ci-n(P)Cni(—=P)

_ 1 Fd fﬁﬂda
“a2 ) %,

X efil(0719)+in07im19e7iP{§(0)7§(1‘))}_

17
Now let #—39=2y and #+3J=2¢. From the discussion in
Sec. 2.6 of Watson, the integrand in Efj7) is unchanged if
Dot —{x=my=xa} or {x,y}—={x=m ==} Therefore the
limits of integration can be taken ass=w and—nw<y<mw
and this gives
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Ci—n(P)Cppi(—P)

1 T o X . .
— —i2lxy+i(m+n)xy—i(m—n)y
2772 fO de*ﬂ'dl/l ©
x @ IP{E+ )~ &(v—x} (18)

Now substitute this result into Uretsky’s formula EG5) to
obtain

i T T . )
VO - f d f d el(m+n)Xf|(mfn)|//
m,n 273 0 X . ¢

* o [ e IkX{E(y+x)— & x)}
“i2ly
X2 e f_mdx X2—sir? ¢,

|=—

(19
Again following Uretsky, the contour over th¢ integral is
defined in the usual way by requiring that giphave a posi-

tive imaginary part. Hence by closing the contgim either
the upper or lower half-planene obtains

[

i zrelk sin &yl &G+ x) — &=

e IKX{&(y+x) —&(y—x)}
X2—sir? ¢,

provided sing, has a positive imaginary part.
Substituting this result into Eq19) gives
0 1 ( i i(M+n)x—i(m=n) g
Vm,n:ﬁ o d)( _Wdlﬂ e
* @ik singy|&(ytx) —E(p—x)l
X > e i2x (21)

sin ¢,

|=—o

So far this is similar to the analysis presented by Uretsky.
For the sinusoid case, Uretsky continued this argument by

(in effect) splitting the integrations ovex and ¢ into the

ranges &y=<m/2, O<y=<m/2. He then observed that for the

sinusoid z=d cosKx), |&(¥+x)—&E(¥—x)|=2d siny
Xsing=0. Then he split the factor

eik sin ¢|\§(¢+X)—§(¢—X)\Ee2ikd sin ¢, sin x sin ¢
=cog 2kd sin ¢, sin x sin )
+i sin(2kd sin ¢, sin x sin ¢).
The cos(Rdsin ¢, sin y sin ) factor then leads to the first

term in Eq. (A2) of Ref. 5; the sin(Rdsin ¢, sin x sin )
factor leads to the second term in EA2) of Ref. 5.

Instead of trying to generalize this lengthy argument,

consider the case in which the surface wave nunikbéand
CoS¢y) is assumed to be pure imaginary. From Egl) of
Oberhettingétor Eq.(16.1.5 of Hansefh’ one has the Fou-
rier series
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i sinfa\b?+ (y+1c)?}
VbZ+(y+Ic)?

|=—c

my .
i
=g 2 exp{—(2wm+x) Ey

m=my

x Jo(b[a%—c~2(2mm+x)?]¥?), (22

where the integersn;=—[(ac+x)/(27)] and m,<[(ac
—=x)/(27)]. (If [(acxx)/(27)] is an integer, one half the
the corresponding term in the sum is to be taken. The param-
etersa, b, c, x, andy are real. This means that the finite
sum on the rhs of E¢(22) is over all integers that lie be-
tween the values-[(ac+x)/(2w)] and [(ac—x)/(2)].
Assume the parameter values-{(ac—x)/(2m)]>—[(ac
+x)/(27)]>—1, and hence the finite sum is an empty sum
and the rhs vanishes; i.e.,

i " sin{a\/b2+(y+lc)2}_o
T b yrlo?

|=—o
0>[(ac—x)/(2m)]>—[(ac+x)/(2m)]>—1.

(23

This series may be easily verified numerically in the case 0
>[(ac—x)/(27)]>—[(ac+x)/(27)]>—1. The use of
this series is the crucial part of the derivation of the Rayleigh
equations given in this paper.

Now by making the identifications=—2y, a=k|&(y
+x)—&(y—x)|, b=1, ic=K/k, iy=cos¢, (henceK is
pure imaginaryone can apply this result to the sum oveén
Eq. (21). This means that the factor exp6in ¢ &+ x)
—&—x]) in Eq. (21) can be rewritten as exik sin ¢{&(y
+x)—&w—x)}) with no loss of generality, since the sum
over the sitk sin ¢|&y+x)—&y—x)|} factor vanishes by
Eqg. (23). Hence

Vo b f”d J'” dyp imtmx—itm=n
mn- 242 o X -

o o @ksing{é(ytx) -y x)}
sin ¢,

Now one can now reuse the integral formula for the product
of the C functions given by Eq(18), to rewrite Eq.(24) as

(24)

©

V= 2

|=—w

Ci_n(k sin ¢)Cp_1(—k sin ¢y)
sin ¢, ’

The proof of this relation is valid along the finite line seg-
ment joining the parameter poinffac—x)/(2m)]=— 6,
and—[(ac+x)/(2m)]=— &, provided the real numbe ,

8, satisfy 0< ;< 5,<1. In terms of the parametd, it is
valid along the finite segment of the compliéxaxis passing
through the origin and joining the parameter points

Ky=—i[2m61+2x 1| &+ x) — E(— x|,
Ko=i[2m 8+ 2x 1 &(p+ x) — E(h—x)|.

Note that since Eq(23) is certainly true ifa=0, one can
assumea# 0 without loss of generality. In particular since

(25
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a=k|&(g+ x)— E(¥—x)|=0 if x=0 or y=m, then only the connecting theR,, and the, then leads to the Rayleigh
values < y<<m need be considered. equations for the general periodic surface in the form

If two functions are equal along a finite line segment
lying in a region in which both functions are analytic, then
the functions must be equal throughout the entire region in
which both functions are analytidinite and differentiable
Hence by analytic continuation E(R5) must be valid for all  valid for all parameter values for which the generalized sum
parameter values for which the series in E2f) is an ana- in Eq. (25) represents an analytic function. This is the form
lytic function (provided the finite line segment of the com- of the Rayleigh equations which are investigated in this pa-
plex K axis passing through the origin and connecting theper.
pointsK;, K, is included in this region Note that by using Eq918) and (23) and making the

Substitution of Eq(25) into Eq.(13), the interchange of same analytic continuation argument as above one can find
the sums oven and| and the use of Uretsky’s relation the following generalized Kapteyn sums:

2 Crnoi(—ksing)Ri=—Cn(ksingo), (26

oo

Ci-n(k sin ¢))C_1(—k sin ¢) = C;_(—k sin ¢)Cp— (K sin ¢y)
|=—0o Sin ¢|

=0. (27)

In the special case=d cosKx), then Eq.(27) reduces to required for the analytic continuation argument, the method
Eq. (B3) of Ref. 5, which was proven using a lengthy argu- employed in Sec. 8.7 of Watson is required rather than the
ment based on power series expansions and did not requisaddle point methods used by Hill and Celli, and van den
any analytic continuation arguments. For the general serieBerg and Fokkema.
in Eqg. (27), so far it seems necessary to use Fourier series To illustrate this method in a detailed manner, consider
and analytic continuation. The method to determine the pathe simplest possible extensigm terms of the symmetry
rameter values for which these series represent analytic funproperties of theC functiong of the single sinusoid case:
tions is given in the following section. €(x)=d cosKx)+d’'cos(XKx). In this special case one has
the additional propertiesC_,(x)=C,(x) and C_,(—Xx)

=(—1)"C,(x); this reduces Eq.28) to the single constraint
Ill. REGION OF VALIDITY FOR THE RAYLEIGH

EQUATIONS “I‘im |C (K 1)< 1. (29)

. Prpwded the surface(x) consists of a.f|n|te sum OT (Note that the subsequent analysis is valid for any surface of
smuso@s and if thg sigh#0 then each term in the series N the form z=d coskx)+d’ cog(2N+1)Kx], by making the

Eq. (25) is differentiable. Furthermore the series can be d'f'replacement 3.(2N+1).) The following analysis can be
ferentiated term by term if the series is uniformly conver- - . "o correspond to Kapteyn's derivation of the Carlini
gent. From the Weirstrass M-test, uniform convergence wilky 5 a5 written in Sec. 8.7 of Watson. Rewrite the inte-

be implied by absolute convergence yvithin a finite region Ofgral representation of Eq10) by making the substitution
the complexK plane. Hence the function represented by the_ exp(6) to yield

series in Eq(25) will be analytic if it converges absolutely L at L

within some finite region of the complé« plane. In addition . _

one must ensure that the region of convergence includes a CuiKlih=757 é M1 exp[z |I|(Kd

finite section of the compleK axis surrounding the origin. It

will follow (see Fig. 3 that the region of convergence in the +Kd’ t3+£3

complexK plane includes the origin. One may therefore con- t

clude that Eq(25) is valid for all parameter values for which where the contour circles the origin once in the positive di-

the series converges absolutely. rection. Now set=exp( #+u) where the radius exp] of the
From the Cauchy root test for absolute convergence thigontour circling the origin is to be chosen, i.e.,

means that 1 = 1

lim |C,_n(k Sin ¢)Cpn(—k sin ¢)|!!" C(iK[Ih=5— Jiﬂdﬁ exn[lll[g Kd(e'e'’+e "e™")

1=

= lim |C,(iK[I|)C_ (—iK|[I]|)|'<1. (28) 41 Kd/(esuei30+e—3ue—i30)_u_i0]}_ (3D

[H—e

.
t

: (30

Hence the problem amounts to determining the asymptotilow if M is the maximum value of
behavior, for large argument and large index, of @&x) 1 Unif L o Un—iB
. : g : 5 +
functions defined through the generalized Bessel integral erxp{de(e € ? e _
Eq. (10). Since complex arguments of ti@ functions are +3 Kd'(e3e*+ e 3Ue 30 —y—ig}| (32
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then one has the upper bound
|Cy K[ [<=M. (33
Now for simplicity, for the moment assume thitis a real
parameter. In that case the real part of
% Kd(eueie_kefuefiﬁ)_k % Kdr(e3uei36)+ef3uefi3€)
—u—if (39
Kd coshu)coq #)+Kd’' cosh3u)cog36)—u. (35

This reaches its maximum value w.r&when =0 and its
value is

Kd cosiu)+Kd’ cosh3u)—u.
Hence for all positiveu
|C) (iIK[I[)|=<exp{|l|[Kd coshu)+Kd’cost3u)—ul}.

(37)

To obtain the strongest inequality possible, chao$e mini-
mize the rhs of the previous equation, i.e.,

Kd sinh(u)+3Kd’ sinh(3u)=1. (38
In the case of the single sinusadd= 0, then Eq(38) can be
solved analytically asi=sinh }(1/Kd) and Eq.(29) reduces

to [(Kd)e'1 &% (1+ T+ (Kd)?)|<1. As noted in Eq.
(31) of Purcell® the numerical solution of this constraint for
Kd real givesKkd<0.6627 and this is the region of validity
(for Kd real) of the Rayleigh equations for the single sinu-
soid. In the case of Eq438), the solution for is determined
numerically asi= u,,,(Kd,Kd’). From Eq.(29) the Rayleigh
validity constraint then amounts to

Kd coshuni(Kd,Kd")]+Kd" cosh 3u,x(Kd,Kd")]
—Umin(Kd,Kd")<0.

(36)

(39

3Kd’

07} .
0.6 >
05f D
041 ™
03l
02} ™

Validity region of Rayleigh eqs

01 02 03 04 05 06 07

FIG. 2. The region of validity of the Rayleigh equations in the Fourier form.
The shaded area gives the allowed values of the sl&pleand Xd’ for a
composite surface=d cosKx)+d’ cos(KXx). In the interior of this region
the generalized Kapteyn seriesV%,n=E§°:,xC,,m(k sin ¢)C

X (—k sin ¢y)/sin ¢, converges absolutely and this implies that the Rayleigh
equationgEq. (26)] are valid. For use in Fig. 5, note the boundary values
(Kd,3Kd’)=(0.3,0.238) andKd,3Kd’)=(0.4,0.145).

gives the shaded region shown in Fig. 2. In any event,
the Rayleigh validity constraint requires bokd<0.6627
and Xd’'<0.6627. Now observe that for the parameter
valueskd=0.3 andKd=0.4, Fig. 2 predicts that the region
of convergence extends out to the valueKd3=0.238
and Xd’'=0.145, respectively. These values can be
easily obtained by the following recip€i) find the value

of u=up,(3Kd’,Kd) which minimizes Kd coshu+Kd’

X cosh &1—u, (2) substitute this value af into the equation

Kd coshu+Kd' cosh 3i—u=0, (3) the numerical solution

of the previous equation then gives the boundary of the re-
gion in the Xd' —Kd plane in which the constraint given in
Eqg. (39 holds. As an illustration of the simplicity of the
numerical analysis required, in the Mathernaffoomputer
language, this procedure can be implemented by the follow-
ing computer code:

In terms of the maximum slopes of the individual sinusoids

Kd and ¥d’, the numerical solution of Eq¥38), (39

In[1] :

{u,0}][[1]]==0,{s2,0,.1}]:{s2[.3],s2[.4]}
Out[1] = {0.238046,0.145195}.

The program variables2, s1 have the physical meaning
s2=3Kd’, s1=Kd. (These values will be used in Fig. 5 to
examine truncation solutions for the,,.)

The casee(x)=d cosKx)+d' cos(Xx+w) with the

phase factor & w27 can also be treated by an extension of

this approach. In that case the valuedahat maximizes the
integrand Eg. (31)] in the integral definition of the functions
Cy(iK|I]) and C_j;(—iK]l|) must also be found numeri-

s2[s1_] :=s2/.FindRoot[FindMinimum[s1* Cosh[u]+s2* Cosh[3*u]/3-u,

shaded area in Fig. 2 increases. The maximal extension of
the validity region occurs for the phase differeneoe= .
Similar comments apply for the most general case
=3M .d, cosiKx+wy).

In the foregoing it was assumed that the surface wave
numberK was a real parameter. These previous results may
be generalized to allow complex values of the surface wave
numberK. If it is assumed thad’, d are real parameters and

cally. For reasons of brevity this case will not be develope is allowed to be compleK=|K|e'¢, then in place of Eq.

here. One finds that as the phaseincreases from 0, the

(39 the convergence constraint for the series expression for

region of validity of the Rayleigh equations shown as theV, , becomes
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take the normal derivative of the Helmholtz formula first,
then take the limit as the field point approaches the surface.

In this manner Holford obtained the equati¢rse Eqs(39),
(40), and(42) of Holford"]
m Kd It 2 Viathn=20m, (41
where
- ) chos¢0C K si 42
Ym=—|sin ¢g Ksindy m(K sin ¢g). (42)

FIG. 3. The region of convergence of the series expressior\/?p,( for
complex values of the surface wave numberfor a composite surface ~ The matrixvﬁq n IS given by
=d cosKx)+d' cos(XXx). The interior of the oval region surrounding the L

origin of the complexKd plane gives the complex values I§H for which vi = ik Ld —iKx(m—n) * dx’ ik(x' —X)cos ¢,
the generalized Kapteyn seriesV%vn:Zfz,mcl,n(k sin ¢)Cp m H_Z 0 X e X €

X (—k sin ¢)/sin ¢y converges absolutely. The solid curve is for the case

—0

d’'/d=0 and this is just the “domain K" from Sec. 8.7 of Watson. The 1 VY — Y2
dashed line is the casE/d=0.264; note that the dashed curve crosses the Hl(k\/(x x')7+ (e(x) — (X))
real axis akKd=0.3 and this gives Rd’ =0.238, consistent with Fig. 2. The \/(X— X' )2_|_ ( e(X) _ 6(X'))2

effect of adding extra sinusoids to the rough surface is therefore to shrink

the region of convergence in the compléd plane. de(x)
X|e(xX")—e(X)—(x"—x) ax | (43
1 u —u —
2 |Kld{e" cog 6+ a)+e™" cog6—a)} By manipulating this integral expression fuf, ,, Holford
+ 1|K|d"{e® cog36+a)+e 3 cog36—a)} was able to prove that thesg are equatlons. of the “second
kind,” and hence proved existence and uniqueness of the

—u<o. (40)  truncation solutions for the,, .

By following the same procedure as for tb{%’n matrix
one may derive an analogue of Uretsky’s integral represen-
tation i.e. by substituting the plane wave integral representa-
tion for the Hankel function one obtains E@4) of PurcelP

The value of#=6(u,|K|,a,d,d") is determined by maxi-
mizing the Ihs of Eq(40) w.r.t. 8 (if =0, this value would
be 6=0). The value ofu=u(|K|,a,d,d’) is obtained by
minimizing the Ihs w.r.t.u. This gives a single constraint

involvi_ng |K|, @, d, andd’. The numerical soll_Jtion of Eq. 1 :i_ dex e“KX(m‘”)fw Ay elk7 C0sdn
(40) gives the allowed complex values as a finite area sur- L T o7
rounding the origin of the compleiX plane as shown in Fig.
3. Since the region of convergence includes a finite section ® @ g Pxr T IPx(e(x)~ e(xt 7))
of the complexK axis passing through the origin, Fig. 3 XJ:DOdPXJ%dPZ p§+ Pg—kz
validates the the analytic continuation argument in Sec. Il.
Further details follow the same arguments as in Sec. 8.7 of “|lp.+p de(x) (44)
Watson and are left to the reader. X dx |
Now expand the exponential factors using E®), perform
IV. THE EQUATIONS OF THE SECOND KIND the 7 integral in terms of a Dirac delta function, and tke

integral in terms of Kronecker delta functiofisse the gen-

The Rayleigh quations for the pgriodic s_urface_suffe_r rating functionEq. (9)] to rewrite thede(x)/dx factor to
from the same technical problems as in the single sinusoi btain

case. In attempting to solve E@®6) by truncation, one may _
observe that the condition number of the truncated matrix of V2 _I_J’w dXCm—|(—kX)C|—n(kX)
coefficients mn ) X2—sirt ¢,

“7I7 0, otherwise. XXt —— |- (49)
increases without boun@ven for parameters within the re- Now by introducing the integral formula Eq18), the
gion of validity of the Rayleigh equationas the size of the Fourier series given in E423) and the analytic continuation
truncation matrix increasesee Fig. 2 of Ref. b This will  argument used in Sec. Il, one obtains the series representa-
eventually require that the precision of the calculations bejon
increased at the cost of extra computing time. In addition -
there are no existence or uniqueness theorems available for ,1 _ Lo .
such infinite sets of linear equations of the “first kind.” For m.n- |=§:’oo Cn-i(—ksin )Cy—n(k sin 1)
the periodic surface, Holford observed that this deficiency
could be removed by obtaining equations of the “second X[l—cos b1 COS pin] 4smn (46)

kind” for the i, coefficients. To obtain these equations, sin® ¢,
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Furthermore, by applying the Cauchy root test for absolutélhese last three summation formulae yield the following col-
convergence, it follows that the region of convergence folection of sums:
this series representation ‘df;m is the same as the region of
E:;;vergence of the series repre:sentatioklﬂ;gf1 given in Eq. 2 Cin_1(—k sin ¢)C;_ (K sin ¢;)
. m=—
Substitution into Eq(41) and the use of Eq16) leads

o =Cj_(K[sin ¢;—sin ¢]), (53
tpm—l:Zw Crn_i(—k sin ¢) [1—co;f.¢clzos¢m] R r;m (M=1)Cpy (—k sin ¢)C;_ (K sin b))
[1—cos ¢y, COS ¢hg] , __—(=hsiné R .
o Sin ¢o Cr(k sin do)- “7) (sin ¢;—sin ¢y) Crsnamenab, 17 I(’54)

For most applications it is the reflection coefficients
which are required, not thé,, coefficients. These equations D
of the second kind for the,,, may be converted to equations <
of the second kind for the reflection coefficients. Multiply
both sides by __..Cj_n(k sin ¢;)/2 sin ¢; to obtain

_(M=))Cpp_j(—k sin ¢))C;_pn(k sin ¢)=0, (55

Z_ Cn(k Sin ¢9)C;_m(k sin ¢))

Ri=, .2, Ci-m(ksin ¢;)Cri(—k sin 1) —C(K[sin ¢;+sin do]). (56)
[1—cCOS ¢ COS ] ” _ _
>sin ¢>j|sin o R, Z_x MCy(k sin ¢)C;_n(k sin ¢))
 « [1-cosepy cos ¢] j sin ¢ _ _
_—m;x >sin ¢J sin ¢0 Zm Cj(k[Sln (bj"‘Sln (ﬁo]) (57)
X Cj_m(k sin ¢;)Cr(k sin ¢y). (48) Equations(51)—(57) allow one to rewrite Eq(48) as

The sum over the indem above can be performed analyti- - ~
cally using analogues of the Bessel function summation for- Rj_|;x MjRi=4;, (58)
mulaeX " _,.J,(x)J,_(y)=Jp(x+y) and so on.

To derive the required summation formulae, return towhere

the generating function for the, (x) functions. From Eq(9) [1—COS by COS b+ SiN b Sin & ]
- i i

, c ™ sin ¢;(sin ¢o+sin ¢;)
—ix&(0) — II‘BC
€ 2, €"'C), X C;(K[sin ¢o+sin ¢;1),

r=—o

(49
0 M .:0’ 59
e—iy§(0): E eil"@cr,(y). Js) ( )
r'=—o M :Cj,|(kd[sin (ﬁ]——sin ¢|])
As for the Bessel function case in Sec. 2.4 of Watson, mul- I sin ¢;
ggg/wt;fos%biv;/% formulae together and equate powers of [1-CoS ¢ COS bj—Sin by sin b;]
(sin ¢;—sin ¢;) '
2 Ci0Cy(y)=Cp(x-+Y). (50) J#l.

. I ' . These equations are the generalization of E@S) of
By differentiation of the first of the formulae in Eq&49) Purcell® valid for an arbitrary periodic surface consisting of

w.r.t. 0 and then following the same procedure as abovea finite sum of sinusoids. Now following Holford, these are
gives the results

equations of the second kind provided

[’

p)( o) © ~
r;m rCr(X)Cp—r(y)_(X+_y) Cp(x+y), | IZE_OO |Mj’||2<00, m;_m |¢m|2<°o- (60)
(x+y)#0, (51) By generalizing the arguments in Appendix C of Purcell,
- these conditions are valid for the same parameter values for
2 rC,(X)C_,(—x)=0. (52) \év;}il;:tgl';he generalized Kapteyn series Vﬂ;’n converges ab-
r=—o .

690  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998 A. Purcell: Rayleigh equations for a periodic surface 690



A useful observatior{but not of course a new ohés "
that the rhs of Eq(58) is just the unshadowed Kirchhoff . 4o =45",Kd=3
approximationdp(x,z)/dn|,— ¢xy= 29Pinc(X,2)/ IN| ,— ¢(x for —— 3Kd'=0
the periodic surface, i.e., 3Kd’'= .1

. . o 0.6
Riirehnoft_ _ [1—co§ o cgs o +S|.n boSin ;] 04
) sin ¢;(sin ¢o+sin ¢;) 02
X Cj(K[sin ¢o+sin ¢;]). (61)
05 1 L5 2 25 3 35 4
V. SOME ADDITIONAL NUMERICAL RESULTS kd
Now consider a truncation solution of Eq%8) for the 0o =45°,Kd= 3
. - ) 1
particular coefficienRy,, i.e., —_——— 3Kd'= 0
« _ 08 3Kd'= .1
l;m aj’|R|:bj s (62) g' 0.6 e
_ 04 N\ ]
b ¢, —P+M<=j<P+M, 02 N\
10, —=P+M>j>P+M,
_ (63 05 1 15 2 25 3 35 4
=M, —-P+M={jI}<P+M, kd
a] 1= .
0, otherwise.

. . . FIG. 4. Plots of the reflection coefficientR,| and|R_,|, for the periodic
DenOt.e th? solution obtained by solving theseP(21)  syrfacez=d cosx)+d’ cos(&x). The parameter valueso=45 °C, Kd
equations in (P+1) unknowns afRRy;(2P+1). Note that =0.3, and Kd’={0,0.1} (d’/d={0,1/9}) are used in this illustration. By
in the single sinusoid case=d cosKx), theC,(x) functions  comparing the cased’/d={0,1/9}, it is clear that the effect of the ripple
reduce tai ~'J,(x), which are easy to numerically evaluate. "créases as the frequency increases.
For the general periodic surface case @éx) are evaluated

by numerically integrating the Bessel type integral given byjyst |1—|Ry,(N)/Ry(N+2)||. Provided the truncation solu-

Eq. (10); simple trapezoidal integration seems to work thetions are converging this means that this quantity should be

best. About 10-15 lines of computer code are required t@mall for N large. A plot of|1—|Ro(N)/Ro(N+2)|| versus

construct a program to solve E¢§2). 3Kd’ is shown in Fig. 5 for several large values of the trun-
To show the effect on the reflection coefficients of su-cation matrix sizeN. The predictions of Fig. 2 are confirmed

perimposing a ripple of period/3 on a sinusoid of periotl, i Fig. 5. For the parameter valuésd=0.3 andKd=0.4,

again consider the simplest possible extension of the sinune relative changes in the value of the truncation solutions

soid case=d cosKx)+Kd' cos(IKx). Numerical values for - yemain small for values Bd’ <0.238 and Kd’<0.145 re-

Rm(N) for a specific choice of the parameters k, d, d’,  spectively and diverge thereafter. The parameter valbies

K, ¢ take on order of one minutgor N~29) by circa 1996  =45° andkd=1.0 are used in this illustration. Fig. 5 can be

desktop computinga 66 MHz processor For the parameter regarded as the generalization of Fig. 4 of Purell.

values ¢y=45°, Kd=0.3, and ¥Xd'={0,1} (d'/d

={0,1/9}), plots of|Ry| and|R_,| vs kd are shown in Fig.

4. By inspection of these plots, it is clear that the ripple is

important at higher frequencies. For the specular componen\t/" RELATIONSHIP BETWEEN DIFFERENT FORMS

the effect of the ripple is considerable fbd>2. Note that OF THE RAYLEIGH EQUATIONS

the positions of the Rayleigh anomalies gin=0, indicated During the course of the review process for this paper

by the presence of certain cusps in the plots|Rf| and  gome interesting arguments have been exchanged with one

IR_], are of course unchanged by the addition of the ripple ot the reviewerghereafter referred to as reviewe€” ) re-

Figure 4 may be useful as a simple benchmark for the readgjaring the regions of validity of different forms of the Ray-

to test code for solving for reflection coefficients. leigh equations. Some of these are points are sketched below.

~ To demonstrate the convergence of the truncation solugqr the purposes of the subsequent discussion, only the sinu-

tion of Egs.(58) for the reflection coefficients again consider g4iq case will be considered, henge)=d cosKx. The two

the simplest possible extension of the sinusoid case eqyations under discussion in this section are Rayleigh’s

=d cosKx)+Kd" cos(Xx). Return to Fig. 2 and recall that equations in the form analyzed in this current paper
for the particular parameter choic&sl=0.3 andKd=0.4,

Fig. 2 predicted that the region of convergence of the series
representations fovy, , (andV}, ) extends out to the values _2 i'7™) _m(kd sin )R = —i~"Jp(kd sin ¢o)
3Kd’=0.238 and &d’'=<0.145 respectively. Now consider - (64)

a truncation solution of Eqg58) for the particular coeffi-

cientRy, . The relative change in the truncation solutions asand Rayleigh’s expansion for the pressure on the surface of

the sizeN of the truncation matrix; , is increased by 2 is the pressure-release sinusoid

[
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05 This is Millar's criterion and leads to the constraikd

= — N=29 Kd=.3 =<0.448. Sincee(x)=min[e(X)] at Kx=r, this is a neces-
% 041 —o N=-49 sary and sufficient condition for demanding absolute conver-
5 0.3 gence at all points on the surfacéFrom Art. 22 of
Z 02 Kd'= 238 - K Bromwich® it may also be noted that the series in E6p)
ra o converges, in contrast to absolute convergence, for all values
= 0.1 of the slope and for all points on the surface with the pos-
sible exception of the point&x=0, , 27.]
005 01 015 02 025 In response Purcell pointed that by a trivial rewriting of
3Kd’ Eq. (67) by substitutingkx, = —i sinh }(1/Kd), one has
—

05— N-2 Ko fim R [V (Kd)eVi+(Kd? 7
= = = . im =|l—.
%’0'4 —e= N=49 / N 141+ (Kd)2

03 '
§ ! From the Carlini formula in(1) 8.7 of Watson it follows that
€02 Kd'= 145,
%01 / lim |3, m(kd sin )| = lim 3, (iKd 1)
- H Z | o0 | -0

0.05 0.1 3(1){:15 02 025 (Kd)eV1+Kd? a1
7 <|— .
1+ 1+ (Kd)?

FIG. 5. The region of convergence of the truncation solution of the equa- . .

tions of the second kind, Eq¢58), for the periodic surface=d cosKx) Hence by applying the Cauchy root test one obtains the suf-
+d' cos(Xx). The vertical axis gives the relative change in succeedingficient condition for the absolute convergence of the series in
truncation solutions of Eq58) for |Ry|, i.e., |1—|Ro(N+2)|| versus the Eq. (64

slope Kd', whereRy(N) denotes the solution obtained by takiNgequa-

tions inN unknowns._ Note that _the solutions are well-behaved_ for the pa- (Kd)e\m

rameter values predicted by Fig. 2; namelykifi=.3 the solutions are <1 72
well-behaved up to the valuek?l’'<0.238, forKd=0.4 for values &d’ 1+ 1+ (Kd)2 (72)
<0.145. The parameter valuég=45° andkd=1.0 are used in this illus-

tration.

This is the domain K” from the theory of Kapteyn series
. (see Chapters 8.7 and 17 of Wats@md as was stated in
S Reikix cosd+ e(xsin gy Ref. 5 of the manuscript, the numerical solution of this con-
| straint gives the sufficient conditioid<0.6627 (Note that
the boundary valu&d=0.6627 was not investigated in Ref.
5, hence this condition is sufficient only.
“C” refers to Egs.(64) and (65) as the Rayleigh equations On the other hand one can multiply E@65 by

. . . : . - H H L/2
in “Fourier” and “coordinate” representation respectively. L exi —ikx cosdy], integrate oveq -'f ,dx term by term
As expressed by C,” from Egs. (8), (9), and(16), one (the assumed absolute convergence implies uniform conver-

- _ eik(x €OS ¢pp— €(X)sin ¢g) ] (65)

has the integral representation genceg and obtain Eq(64). Furthermore one can multiply
Eq. (64) by exdikx cos¢y,, take the sum=.___ , inter-
R = 1 f” dOy( 61K )e 1Ko cosdyK—ik sin ¢ e(01K), change the sums oven andl, perform the sum ovem
4msing ) » using the generating function for Bessel functions, and get

(66) Eq. (65). This leads to what C” characterizes as a contra-
As |I| - then sing—iK|l|/k. “ C" now points out that the diction, namely that Eqg64) and(65), hitherto assumed to

resulting integral folR, can be estimated by steepest descenP® completely equivalent, have different regimes of validity

(see Millar's work for examplegiving the asymptotic result (defined by the requirement of absolute converggric€™
proposes to resolve this contradiction by stating that Egs.

67) (64), (65) are not completely equivalent, that the interchange

of the sums required in deriving E¢4) from Eq.(65), can
only be carried out if Millar's more restrictive assumption
holds. “C” avers that statements such as “... the Rayleigh
equations are valid iKd<0.6627...” must be sharpened to
specify that this constraint refers to the Fourier form of the
Rayleigh equations, E¢64). Likewise the meaning of Mill-
ar’s constrainik d<0.448 must be associated with £§5),

R|—>const|7i§ exg K(—ix, +e(x,))I],
where the saddle poimt, is defined bye’(x, )=i or equiva-
lently Kx, = —i sinh (1/Kd). “ C” then considers the spe-
cial point Kx=7 and applies the Cauchy root test to the
series on the L.h.s. of Eq65), to obtain the following nec-
essary and sufficient condition for absolute convergence

eKIRe(—ix, +e(x*))+d] -1 (68)  what “C” terms the coordinate form of the Rayleigh equa-
This can be rewritten as tions. . .

It appears that C’s” ideas regarding the absolute con-

Re(—ix, +e(x*))<—d. (69  vergence of the sum in E@§65) can be extended. Instead of
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demanding absolute convergence at all points on the surface, 1 = _ E.(X)
consider an arbitrary poin{x,e(x)) where —m/2<KXx Ji(X)=— E [1-(-1)'™"] = (77)
< 7/2 (modulo multiples of 2r); this point lies somewhere ™ r,:;j‘” J

on the “hills” of the sinusoid. If 7/2<Kx<37/2 (modulo o _ _
multiples of 27) then the point lies somewhere on the “val- Hence by multiplying Eq. (64) by (i/2m)i™ P[1
leys” of the sinusoid. From the Cauchy root test and Eq.—(—21)°""]/(p—m), summing over.,, interchanging

(70), the series in Eq(65) converges absolutely if the sums ovem andl, and using Eq(76), one obtains
(Kd)ekd cosKxgV1+(Kd)? o
<1. 73 —i i'PE,_(kd sin ¢,)R = —ii "PE (kd sin ¢g).
TR (73 .:2_00 il DR, o bo)
(78

If one demanded that this hold &x=, then this gives

|(Kd)eKde 1+ (K71 + 1+ (Kd)?)|<1 which is a trivial Adding Egs.(64) and(78) then gives Eq(75). The converse
rewriting of Millar’s criterion with solutionKd=<0.448. But can be shown by multiplying Eq(75) by (1A)iP~ ™1
if the point lies somewhere on the “hills” of the sinusoid —(—1)°""]/(p—m), summing overZ,.n,, interchanging
— m2<Kx</2, then —Kd cosKx=<0 and Eq.(73) be- the sums ovep andl, and using Eqs(76), (77) yielding
comes

o

/1+(Kd)? . . . .
) <1, O=p=1. (74) |=Z°C i'mM,_ (kd sin ¢y) — 2iE,_ (kd sin ¢))}R,

(Kd)e #Kde
1+ 1+ (Kd)?

For u=1 this constraint is satisfied for all finite values of
Kd<w®, for u=0 the constraint is satisfied foKd
<0.6627; in the general case<@<1 numerical analysis
shows thatkd<0.6627 is sufficient. Hence in the range . .
Kd<0.6627, the series in Eq465) converges absolutely if Eq. (64). Hence EQ'(GA’) is completely equ_|valent to E_q.

— m/2<Kx=< /2. The situation can be summarized by stat-(75)’ p_rov!Qed the interchanges of summation can be rigor-
ing that the series in Eq65) converges absolutely at all ously justified. , , .
points on the surface if and only Kd<0.448, in the range These arguments make it clear that Purcell; original
0.448<Kd<0.6627 it converges absolutely on the hills, put Attempt (se_e line 18, p. 2925 of Ref.)d0 rgconcne the
will fail to converge absolutely at least at some points on thePparent discrepancy between the constralmﬂs<0.66_27
valleys. This raises an intriguing possibility. Can Eg¢) be and Kd=0.448 (namely the postulate that EBS) remains

derived by requiring that Eq65) holds (i.e., that the series yalid at all points on the surface in the rarigel<_(_).662‘0 Is .
converges absolutelynly on the hills of the surface rather incorrect. Instead the author proposes a modified resolution,

than demanding that it be valid everywhere on the surface’.parnGIy the Rayleigh expansid&q. (65)] in terms of out-

Assume thatkd<0.6627 and hence that E¢65) is going plane waves remains valid on the hills of the sinusoid
valid for — m/2<Kx< 77/.2 Multiply Eq. (65) by 2L ~‘exp if Kd<0.6627, and this is sufficient to derive the Rayleigh

—ikx cos ], integrate overf-"* ,dx term by term and ob- €duations in the form of Eq64). In the absence of a rigor-
[ il g S y ous proof of the permissibility of commuting the repeated

=—i"™J,(kd sin ¢g) + 2iE,(kd sin ¢q)}. (79

Multiplying Eq. (75) by 2 and subtracting E¢79) then gives

tain . . -
sums in the previous derivation,C's” caveat that the suf-
* . . _ . flicient constraintKd<<0.6627 applies only to the Rayleigh
tzw I'"P{J1_p(kd sin ¢)) —iE|_,(kd sin ¢)}R equations in the Fourier form of E¢64) would have to be
added to subsequent discussions. The sufficient conditions
=—i"P{Jp(kd sin ¢) +iE(kd sin ¢p)}. (75)  derived in this paper, apply to the Rayleigh equations in the

Fourier form of Eq.(26).
The Ey(X) are the Weber functions defined in Chapter 10 of a2

Watson, with elementary properties E_(X)
=(=1)"En(X), Eq(=X)=—(~1)"En(X), E2n(0)=0, and
E,nr1(0)=2[m(2n+1)]. [The asymptotic behaviour of VII. CONCLUSION
the E,(X) functions is the same as the Bessel functions, i.e.,

Eq. (71) also holds with E,_(kd sing) replacing _ L . . .
: ; Fourier series in Eq23) to derive the series representation
Ji_m(kd sin ¢y). This means that the sum over the WebervgmzEIOC?OOCI_n(k Sin )Cor 1(—K Sin dysing, . valid for

functions in Eq. (75 is absolutely convergent ifKd == m T ; .
a. (75 y g ]};y periodic surface consisting of a finite sum of sinusoids.

The chief new insight in this paper is the use of the

<0.6627] The Weber functions can be expressed as sum hi it implies that the Ravleigh . in the f P
over the Bessel functions of opposite parity. From Chapter qls(;;urelmzif?/aliﬁ fore sua::{]ep;%riggil::aslgpfzszgs sroc\)/rircri]ecc;
1 10 of Wat Iso E 3.1 .3.23 of ' '

and 10 of Watsorisee also Eqsi59.3.12, (59.3.23 o the slopes of the individual sinusoids satisfy the constraint

Hansen one has . . .
L that this series fo\s/ﬁmn converges absolutely. For such peri-

1 & 33X odic surfaces the region of convergence can be deduced from
Ej(X)= o er [1-(=1)"] G—r) (76)  the Cauchy root test in a straightforward generalization of
r#j Kapteyn’s derivation of the Carlini formula given in 8.7 of
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The dispersion equation for Love wave propagation in a layer lying over a half-space is derived.
Both media are assumed to be transversely isotropic fluid-saturated poroelastic solids with principal
axes perpendicular to the surface. The analysis is based on the Biot’s theory. The dissipation due to
fluid viscosity is considered and therefore the dispersion equation is complex and intractable
analytically. An iterative procedure is developed to solve this equation. Two situations are discussed
in detail: (i) an elastic layer overlying a poroelastic half-space @nd poroelastic layer lying over

an elastic half-space. Dispersion curves and attenuation curves of Love waves are plotted for these
two cases. In addition, the upper and lower bounds of Love wave speeds are also explof&98 ©
Acoustical Society of AmericfS0001-49668)04601-3

PACS numbers: 43.20.Bi, 43.20.Jr, 43.35.Pt, 43.40J8G]

INTRODUCTION lowing: (i) dispersion equation is derived for Love waves in
a transversely isotropic porous layer overlying a transversely

Wave propagation in fluid-saturated porous media hassotropic porous half-space, with consideration of dissipation

received considerable attention in recent years because of ititie to fluid viscosity,(ii) the upper and lower bounds of

practical importance in various fields such as earthquake en-ove wave speeds are presented analyticaliy), an effec-

gineering, soil dynamics, geophysics, and hydrology, etctive iterative procedure is developed to solve the complex

Biot'? developed a phenomenological theory and discussedispersion equation for arbitrary values of porosity and fre-

the plane-wave propagation in isotropic porous media. guency, (iv) dispersion curves and attenuation curves are
The geologic materials with pores saturated with fluidplotted for two special cases: an elastic layer on a porous

are usually anisotropic due to bedding, compaction, and thhalf-space and a porous layer on an elastic half-space.

presence of aligned microcracks. The anisotropy may have

significant effects on the wave characteristics. Bormu-

Iatc_ed the _constitutive gquations and equations <_Jf mot_ion fo[_ BASIC EQUATIONS

anisotropic porous solids. More recently, many investigators

studied the propagation of waves in anisotropic poroelastié®. Biot's theory

- 4_13 . . .
media.”"" The present paper will consider Love waves ina  Take the principal axis of transversely isotropic media

transversely isotropic porous layered half-space. asz axis. Following Biot the constitutive equations in the
It is well known that Love waves, first attacked by presence of dissipation are given by

Love'* for isotropic elastic solids, play an important role in

seismology, geophysics, and earthquake engineering. Der- Txx= (2B1+ Ba)eu+Boeyy+ Bse,,+ Bgl,

esiewics, in his series papers, d|scqssed Love waves in a Tyy= By (2B, + By)eyy+ Byt Bol,

porous layer on an elastic half-spden a double surface

layer on an elastic half-spat®and in a porous layer be- T,7= B3€yx1 B3eyy+ Bs€,,+ By, (1)
tween two elastic half-spacé5The last case was also con-
sidered by Padf for the case of small porosity. Der-
esiewicz’'s work presented an approximate scheme to p=Bge,,+Bse,,+B;e,,+Bgl,
determine the phase velocity and measure of dissipation
valid for porous materials in which the mass of the intersti-WhereTXX’ Txy, €lC., are the total stress components on the

tial liquid is smaller than that of the solid. Recently, SharmabUIk material; &y, €yy, €tc., are the components of the

and Gogn¥ discussed Love waves in an initially stressedStram tensor of the solid matrixy is the pore fluid pressure,

. ‘o . . -~ "and ¢ is the increment of fluid content per unit volume. In
medium consisting of a slow elastic layer lying over a liquid- . .
. h terms of the displacement components of bulk material and
saturated porous half-space with small porosity. However, ng : o :
) . . saturant fluid,u; and U; (with i=1,2,3 corresponding to
attenuation curves of Love waves were given in the papers
. X,Y,2), &; and{ may be expressed as
mentioned before.

The main contributions of the present paper are the fol- ;= %(uiyj+uj,i), {=—w;j, (2

TyZ=285eyz, TZX=285eZX1 Txy=ZBlexy,
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wherew; = ¢(U;—u;) and ¢ is the porosity of the medium.
The eight material coefficien8;—Bg in Eg. (1) can be ex- z=-H
pressed in terms of the elastic coefficients of the skeleton, the e 0 $ X
bulk modulus of the constitutive grains, and the bulk modu- z=0
lus of the saturant fluid by using the homogenization M
technique?®

The equations of motion presented by Biéor wave
propagation in porous media are

=l

z
Tij ;= pUit psW;,

0 : : 3 FIG. 1. A transversely isotropic porous layered half-space.
—Pi= peUi T MWW,

wherep=(1— ¢)ps+ ¢p; is the mass density of the porous PoKi(w)] t=i¢ Lpai(w)
material, withps and p; denoting the mass densities of the

skeleton and the fluid, respectively;; andr;; are the coef- —igLpa(=)| 1+ 4if
ficients introduced by Boit. Here, for transversely isotropic ! 3f
porous materials, we have;;=m,,=m;, Mzz=ms, I, 30 |12
=r,=r4, andrgz=r3. They are functions of angular fre- x(l— _'_> (8)
guencyw and may be expressed as 8 fqi
mi=Reai(w)lpt/¢, T1i=7REK ()], ':113’(4) Il. DISPERSION EQUATION OF LOVE WAVES

. . . . A. Wave fields in the layer and half-space
where 7 is the viscosity of the fluidg;(w) andK;(w) are,

respectively, the dynamic tortuosity and permeability with ~ Consider a transversely isotropic poroelastic layer of

the relatiorn®! thicknessH bonded to a transversely isotropic poroelastic
) half-space. The coordinate system is taken to be a rectangu-
ai(w)=in/[Ki(w)wpi], (5 lar Cartesian with the axis pointing vertically downwards
wherei =1 refers to quantities in the andy direction and ~and thex axis along the interface as shown in Fig. 1. Since
i =3 to those inz direction. we are considering the antiplane shear motion, the nonzero

displacement components are those alongythis (i.e., u,
andU, or wy). Combining Egs(1)—(3), we have

2 2
B. Dynamic tortuosity and permeabilit J°Uy Uy "

y Y P Y By -7 +Bs - =pUy+pewy,

For porous solids with pores of simple forffor ex- 9
ample, cylindrical tubes the dynamic permeability/ 0=—pry—m1Wy—F1Wy-

tortuosity can be obtained in closed fofAt® Johnson

et al?! presented an asymptotic expression for general is
tropic porous media, which can be extended to the trans-  {u,,wy}={f(2),9(2)}exdi(kx—wt)], (10
versely isotropic case:

oWe assume the harmonic wave solution with the form

wherek is the wave number. Substitution of E4.0) to Eq.

4i a?(»)K2(0) wpy| M2 (9) yields
Ki(w)=K;(0){|1- 72 B . .
nai ¢ f(z)=a, expiyz)+a, exp(—ivyz), (11
i a()K;(0)wps| _ P
—T] , (6) 9(2)——m f(2), (12

wherea; is the characteristic length of pores in they, orz ~ Wherea; anda, are constants determined by the boundary
direction. The dynamic tortuosity;(w) may be obtained by conditions, andy is given by

Eqg. (5). In general,a;(), K;(), anda; are unrelated and 2_ 2 2 2
: : B.k‘—w‘p w°ps
independently measurable, but if the pores are a set of non- 2= — i i 13
intersecting tubes, these parameters are related to each other Bs Bs(my+iry/w)
by** Hence the displacement components in the layer and half-
8ay(=)K;(0) , spacf can_ be, resiectlv_ely, exprised as
a2 b (@) Uy=[a; exp(iyz) +a; exp( —i72)Jexdi (kx— wt)],
. . . . — - : (14
Similar to the isotropic case, the viscous and inertial forces ~ Uy=a; exp(i yz)exfdi(kx—ot)],
are of the same order of magnitude at a critical frequéncy,and
fei=weil2m=3n¢[87K;(0)a;()ps] L. In terms of f
= i ili _ u u
and the frequency = w/27, the dynamic permeability and Wy W= piUy piUy (15

tortuosity may be written as My tirg /e’ mptirg/el’
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where bars refer to the quantities of the laygf.is of the
same form as Eq3) with B;, Bs, p, ps, My, rq re-
placed by those with bars.

For the Love surface waves expressed by @4¢), we
must have Imy>0 and Rey#0 (without loss of generality,

we assume Re>0), which actually determine the region of

the Love wave speeds.

B. Boundary conditions and dispersion equation

The boundary conditions to be satisfied in the present

problem are
uy=uy, atz=0,
Tpy= Ty, at z=0, (16)
7,y=0, atz=-H,

which when substituted upon by Ed$), (2), (14), and(15)
yield

a;ta,=ay,
17

Bsy(a;—ay)=Bsyay,

ae "M —7a,e'"M=0.

Eliminating the unknown constants, we obtain the dispersion

equation
— B
tan(yH) = —2, (19
| B5'y

To satisfy the requirements of Ini>0 and Rey>0, we must
have

CcoV1l— 8°<c<cgyl— 482 (23
Consequentlyy andy are given by

y=iVB1/Bskiq, y=VB1/Bskiq (24)
with

q={[(1~ &%)~ (c/ce)?]+2i[5— 6% (c/ce)* 1}, 25

q={[(c/c9?~ (1 8%)]+2i[ 5 (clcy)®~ 5]}™2

being the branches of Rpand Reg>0. Substitution of Eq.
(24) to Eq. (18) yields

—q
taf(\/ﬂqle):)\\/M/M? (26)
where=B,/Bs, u=B,/Bs, and\=Bs/Bs.
We further set
— ©a _
=Q;tiqy, )\\ﬁ——aﬂb 2
gd=0q:T+1q; %q (27

with g;, q,, a, andb being real. Then Eq26), upon sepa-
ration of real and imaginary parts, yields two real equations

tan(vud:kH)=a/[1—b tanh(vudzkiH) ], (28
tanh(VugzokiH)=b/[1+a tan(yud:kiH)] (29

from which the dispersion curvds vs k;H) and the attenu-
ation curves(é vs k;H) can be determined. However, the

which is generally complex because of the dissipation of thénalytical solution of Eqs(28) and (29) is impossible, and
system, even it is identical in appearance with the classicdhe numerical solution is also difficult. Here we suggest an
dispersion equation of Love waves in a transversely isotropidterative procedure as follows based on the fact that the at-

elastic half-spacé? In fact, the wave numbek is complex
and thus may be written as

k=ky+ik,=ky(1+i0), (19)

wherek,; andk, are real;6=k,/k; is the attenuation coef-
ficient. The phase velocity can be evaluated by= w/k; . It
is convenient to introduce the following contractions:

Bl 1/2

Cs= 2 2, .2, 2 ,
—prmy/(mi+r7/
PPfl(_l %) (20)
o B, 112
Lp—pfmi/(mi+T/w?)
2
piri/o
2 e W)= P,
(21

pfzrllw

 p(mi+ri/w®)—pimy’

Then y? andy? may be rewritten as

7222—; KH{[(clce)®— (1= 8%)]+2i[6* (clce)®~ 8T},

_ (22)
-z Bi > =2 2 T S* ()2
reg ki{[(c/ce) = (1= ]+2i[ 6* (c/cs)“— 6]}
5
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tenuation of SH waves in porous media is very smai®
(i.e., 6<l):

(i) Set5=0 in Eq.(28) and solve it forc with k;H being

fixed;

(i)  Insertc obtained in the previous step to E&9) and
solve it for &,

(i) Inserts obtained in the previous step to E&8) and
solve it forc.

Repeat stepsii) and (ii) until the difference between the
values ofc (and/or ) obtained by the two nearby iterations
is within the expected errors. Numerical examples will be
given afterwards.

Now let us reexamine Eq8). It implies thatm,; and
ri/w [see Eq.(4)] are the functions of/f.,, a parameter
which may be rewritten as

f c k.H

for  Go 27l HICS (30)

where C, is a characteristic velocity introduced for nondi-
mensionalization. With this result in hand, we can conclude
that the dispersion curve& vs k;H) and the attenuation
curves(é vs kyH) determined by Eq928) and(29) depend
upon the parametet.,H with k,;=2f.,/Cs. The choice

of the characteristic velocitgs depends on the particular
problem considered.
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FIG. 2. Dependence af, on the frequency. FIG. 3. Dependence of* on the frequency.

The dispersion equatiof26) reduces to a real equation It is seen from Fig. 2 that; possesses a rapid change near
in two special cases. One is the case when the porous solidtige critical frequencyf; but almost remains unchanged at
saturated by nonviscous fluid, i.ep=0. In this case, we lower and higher frequencies. The limiting valuesagfat
havem, = a()p; /¢, r,=0 (m, andr, have similar prop- f=0 andf=c are, respectively, given by

ertieg. Thus §=6=6*=6*=0 and B B
112 c(0)= —l, Cy() = —l, 34
By OV SN e Y

s~ ot @
p=@pricn o where c{*) is of the same form as Eq31). The similar
with the similar behavior focs. Equation(31) is exactly the  pehavior may be expected fog.
antiplane shear wave velocity alongdirection with no dis- It is well known that a cut-off frequency exists for the
sipation. Another case is for the dried porous solid, i¢., nth mode of Love waves. That is to say, only waves whose
=0. In this situationm;, my, ry, andr, all vanish. There-  frequency is higher than the cut-off frequency can propagate

fore 6=6=6*=6*=0 and in the layer. The cut-off frequency of threh mode(denoted
\/T \/BT by f5) may be obtained by solving the following equations
1 —_— 1
Cs= ———, GCg= —_— (32) —(n— —
s (1—é)pe s (1 &) pe Vud:kiH=(n—-1)#7, n=1,23,..., (35

The dispersion relation in these two situations is identical to  41=0,=0,
its classical counterpart in an elastic system. Wheg(re)

where th n ion |
=1, the results of these two cases are exactly the same. ere the second equation leads to

c?=c3(1-6%), c26=c?s* atf=f¢ (36)
C. Range of love wave speed from which we obtain the exact upper bound of Love wave
L speed corresponding to timh mode:
Determination of the lower and upper bounds of the
Love wave speed is of interest in both theoretical and prac- J1+46%2-1]¥ c
tical aspects and is helpful in solving Eq&8) and (29). In c=¢——5mz | » f=fn, (37)

fact, inequality (23) defines the range of the Love wave
speed. Unfortunatelyg is unknown and should be deter- Which is nothing but th&§Hwave speed of the half-space in
mined by solving the dispersion equation. However, we havéhex direction in the presence of dissipatitsee the Appen-
indicated before that<1 for SH waves(see Refs. 7 and dix). The variation ofs” with frequency is shown in Fig. 3
13). Therefore,c, and c, may be approximately viewed as with the material constants taken as E8p). It is seen that
the upper and lower bounds of the Love wave speed. Both §* reaches a peak value at the critical frequerigy and
and ¢, depend on the frequency. Heeg is calculated nu- tends to zero at the infinite frequency. Generadi<1, and
merically and plotted in Fig. 2 against the frequency. In thethus we have, from Eq37),
calculation, we take the material constants of the porous

solid as c?~c2 1+5*2_%5*4+g5*6+... . =1,
B,=6.4 GPa, Bs=8.0 GPa, (38
K1(0)=1.0 Darcy, ay(«)=1.5, 33 which implies that(fS) may provide a good approximation
for the upper bound of the Love wave speed ofritie mode.
=3000 kg/mi, p;=1000 kg/ni, bp . ° -ove P
Ps g Pt g If the half-space is nondissipative, we may hawef:)=0
7=10% Pas, ¢=0.2 andcg(f5)=0.
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It may be verified easily that, dgH—« (equivalently,
f—o), {c,8}={cy(),0} is the solution of the dispersion
equation(26). But it is worth notice thatcs(>) is not the
lower bound of the Love wave speed. Later we will show
numerically that the Love wave speed may be lower than
c4() at finite frequencies.

For the first mode, no cut-off frequency exists, i,
=0, which means that all of the waves with arbitrary fre-
guency can propagate in the layer. Whgh — 0 (or f—0),
{c,8}={c4(0),0: satisfies Eq(26). c,(0) is the exact upper
bound of the Love wave speed of the first mode.

IIl. NUMERICAL RESULTS AND DISCUSSION

Numerical calculation will be performed for two situa-
tions. First, we consider a slow elastic layer overlying a po-
roelastic half-space. As the second example, we consider a
slow poroelastic layer lying on an elastic half-space. The first
model may describe the oil- or water-saturated porous solid
under a sandy layer. The second one may be used to examine
the Love waves in a oil-saturated porous layer under the sea
(note that a shear wave cannot propagate in the)fldide
material constants of the porous solids are selected as given
by Eq. (33) in the following calculations.

A. An elastic layer on a porous half-space ) ) ) i
FIG. 4. Dispersion curve&) and attenuation curve®) of the first three

Consider an elastic layer overlying a porous half-spacemodes of Love waves in an elastic layer overlying a porous half-space. The

The shear moduli and mass density of the elastic |ayer arg)lid lines are fok H=10% the dotted lines fok,,H =1, the dashed lines
for kg;H=0, and the dot-dashed line fg,H=10"3.

taken to be
B;=Bs=3 GPa, ps=3000 kg/n. (39  B. A porous layer on an elastic half-space
The dispersion curves are illustrated in Figa)4for Love Contrary to the previous example, we assume a porous

waves of the first three modesi€1,2,3), with different |ayer lying over an elastic half-space of which the shear
values of the parametds;H (wherek.;=2mfc /o). The  moduli and mass density are given by

dashed lines are for the nondissipative case, &0 or
equivalently,k.;H=0. The lower bound of the Love wave B1=Bs=12 GPa, ps=3000 kg/m. (40
speed i< = VB, /ps=1 km/s, while the upper bound ranges The dispersion curves of the first three modes are shown in
betweency(0)=1.5689 km/s andce(=)=1.6108 km/s for Fig. 5a) for ke;H=10® (the solid line andk,;H=0 (the
different modes(See the dotted lines fdr,;H=1. The solid  dashed lines wherek.,=27fH/c,(«). The upper bound
lines fork.;H= 10 do not show this fact clearly becausg of the Love wave speed i5,= B /ps=2 km/s. The lower

in this case varies slightly in the frequency range we considbound fork,;H=0 (i.e., 7=0) is c4(), but it is not the
ered) The upper bound for the nondissipative caseq(s°). case fork,;H =10 althoughc— c4(=) ask;H—x (see the

A fact shown in the figure is that little difference exists be-discussion in Sec. Il C It is seen that the phase velocity of

tween the curves except near the upper bounds. the first mode is lower thawg(>) but higher thancg(0)
Figure 4b) demonstrates the attenuation of Love waveswhenk;H is higher than 6.4.
The solid lines refer to the first three modes wipH The attenuation of the first three modes is plotted in Fig.

=10°. For the lowest mode, the attenuation reaches a peal(b) againstk,;H for k,;H=1C>. It follows from the figure
value at a low frequency, and decreases to zerkBs—0  that, for all three modes, the attenuation increases rapidly at
or k;H—<0. While for the higher mode, the maximum value first and then slowly a&;H increases. We have argued be-
of the attenuation appears at the cut-off frequency and dedere that the attenuation vanishes both at the critical fre-
creases with the increaselofH. The bigger the value of the quency and at the infinite frequency. Thus we can infer that
n order of the mode is, the higher the attenuation is. Theahe attenuation must reach a maximum value at some finite
attenuation curves fde,;H=1 and 10 3 are also depicted in frequency that is not shown in the figure.

the figure with the dotted line and dot-dashed line, respec-

tively. It is shown that the attenuation is higher fiofH

=1 than fork,;H=10% and 10 3, which implies that there V. CONCLUSIONS
must be a value ok H at which the attenuation is the The dispersion equation for Love waves in a porous lay-
highest. ered half-space has been derived. The equation is complex.
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APPENDIX: SH WAVES IN A TRANSVERSELY

20 ISOTROPIC POROUS MEDIUM
1.9¢ Consider arSH wave propagating in a transversely iso-
Z L8f tropic porous medium. Suppose that the propagating direc-
E tion is in thexz plane and makes an angle @fwith the z
T 1.7 axis, the material principal axis. Then the SH wave may be
expressed as
1.6F
{uy,wyt={a,,b,jexdik(x sin 6+z cos 6—cqt)],
1_5 1 I Il 1 " i 1 (Al)
0 2 4 6 8 10 12 14 16
(b) kH which when substituted into E@9) yields
-2 [p— (B sir? 6+Bs cos 9)k?/ w?]a,+ psb,=0,
-3r pfay-l—(ml-i-irl/a))byzo. (A2)
o -4} It follows from this equation that
on
sl St e n=3 p—pfl(my+irg /o) |
k=w - (A3)
B, sir® §+Bg cos 6
6l
The phase velocity and attenuation coefficient are given by
_7 e 1 1 ' L 1 1
) 0 2 4 6 8 10 12 14 16 cr=w/Rek), &r=Im(k)/Rek). (A4)
(a kK H

Combining(A3) and (A4), we have
1+45*2—-1]"?
262 ’

FIG. 5. Dispersion curve&) and attenuation curve) of the first three
modes of Love waves in a porous layer overlying an elastic half-space. The ¢ = \/Siﬂz 6+Bs/B; cog fcg
solid lines are fotk,;H=10° and the dashed lines fdg;H=0.

(A5)

An iterative method is suggested to solve it for the phase &= &*c?/c2 (AB6)

velocity and attenuation. It is demonstrated that the solution ... . 4 s+ given by Eqs(20) and (21). The phase ve-
depends upon a parameter involving the critical frequency 2 : i

f.1 and the thickness of the layer. Two examples, which mayOCIty for a wave propagating in the direction (9=90°) is
be of practical interest, are discussed in detail. The phase V1+46*%—1
25%2

velocity and attenuation are plotted against the dimensionless ¢7=Cs
AWhich is of the same form as E(7).

112
: (A7)

frequencyk,H. The attenuation is generally very small for

the lower modes but may be higher for the higher modes.

zero frequency or infinite frequency, the attenuation van-

ishes.
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A three-dimensional finite difference code for the modeling
of sonic logging tools
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This paper presents a numerical program for the simulation of elastic wave propagation and
scattering in three-dimension@-D) cylindrical coordinates based on the first-order velocity-stress
finite-difference scheme on staggered grids. Both Liao’s and Lindman’s absorbing boundary
conditions are implemented for the exterior boundaries to efficiently truncate the computation
domain for elongated 3-D well logging problems. Symmetric and anti-symmetric boundaries in
azimuthal and axial directions are also implemented in the code to further reduce the size of the
problem. Included for the first time with this code are very large and complex geometrical structures
such as the whole slotted sleeve housing of a sonic well-logging tool which typically involves
hundreds of millions of unknowns. The calculation for such a large problem only takes a couple of
days on a four-processor SGI Power Challenge machine. Different types of slotted sleeve models
are studied for sonic logging tools. Simulation results show that different slotted sleeves vary widely
in delaying and attenuating the pipe waves which travel along the tool housing. A new slotted sleeve
structure with three horizontal slot sections for every vertical slot period is proposed for better
performance. A dipole source is found to produce much cleaner waveforms than a monopole source.
© 1998 Acoustical Society of Amerid&0001-496@08)00702-4

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20ANN]

INTRODUCTION ing (NMM) technique and the two-dimensional finite differ-
ence (FD) method are generally used for axisymmetrical
Sonic logging is one of the most widely used geophys-problems where horizontally-layered formations are involved
ical methods in borehole environments. A typical sonic log-in addition to the concentrically-layered borehole structures
ging tool includes one or more transmitters and several retStepheret al, 1985; Tsang, 1986; Randat al., 1991; Le-
ceivers in addition to its electronic circuits. A slotted sleeveslie and Randall, 1992For nonaxisymmetrical media, a full
housing is generally used to hold the sonde components antiree-dimensiona(3-D) problem has to be solved. Due to
support other logging tools in combination. The slottedthe large number of unknowns involved in a 3-D elastic
sleeve, as a major part of the sonic tool, is made of a steqlave problem, the finite differend&D) method is used pre-
pipe with many slots on it. Very finely-structured slots aredominantly (Daube and Randall, 1991; Yoon and Mc-
designed to attenuate and delay the pipe waves travelinglechan, 1992; Chengt al,, 1995; Liuet al, 1996. Unlike
along the tool housing so that the existence of the steel pipether numerical methods such as the boundary element
does not have a large effect on the elastic wave fields. Imethod(BEM) and the finite element methd&EM), FD is
order to optimize the design of sonic tools, researchers haveasy and straightforward to implement, and can be easily
performed many numerical and experimental studies relategarallelized on a modern parallel supercomputer. Further-
to the transducers. For slotted sleeves, however, only experinore, the memory requirement of a FD code is 0@gN),
mental studies have been conducted. Due to the restrictionghereN is the total number of unknowns. Most of the pre-
of cost and time, past experimental studies performed on thgious 3-D FD studies, however, are for Cartesian coordi-
slotted sleeve are quite limited. In this paper, we present aates. It is very difficult and too expensive to fit a finely-
finite difference code which can model the whole slottedstructured slotted sleeve into a numerical code in rectangular
sleeve for sonic logging tools. Some simulation results willcoordinates. For well logging simulations, a cylindrical co-
be given for certain slotted sleeve designs. ordinate formulation is more pertinent because the discreti-
Various studies have been done to model sonic waves ipation is more conformal to a borehole environment. Due to
borehole environments. The real axis integrati®Al) and  the usual nonaxisymmetric property of acoustic well logging
the branch-cut integratio(BCl) have been used to compute tools and borehole structures, a full 3-D cylindrical FD pro-
sonic waveforms in concentrically-layered formatidisot, gram is important not only in designing and analyzing the
1952; Tsang and Rader, 1979; Cheng and Toksoz, 1981ools, but also in understanding the elastic wave propagation
Kurkjian, 1985; Kurkjian and Chang, 1986; Liu and Chang,in the presence of the tool and in interpreting the measured
1994, 1996; Lu and Liu, 1995The numerical mode match- data. In this paper, we present a 3-D FD code in cylindrical
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coordinates for elastic wave propagation and scattering simu
lation. In what follows, we will first present the formulation
and discretization scheme, then validate the code against th
RAI method for layered media, and finally apply the code to
simulate some typical slotted sleeve structures in fluid and in
a borehole environment.

I. ELASTIC WAVE EQUATIONS AND THEIR
DISCRETIZATION

For an inhomogeneous isotropic elastic medium charac-
terized by the mass densip(r) and Lameconstantsi(r)
and u(r), the first-order partial differential equations for the
particle velocity vector and the stress tenserin cylindri-
cal coordinate system are given @su et al., 1996; Randall
et al, 1991; Aki and Richards, 1980; Auld, 1990

v, lﬁ(rrrr)+lﬁrr9 dTr; Ty

Pt = v or r 96 9z _T+fr’ @

(9U0 1 0')(r7'r0) 1 3799 0')7"92
Plot —r o Tt a0 oz

+fy, (2 r

FIG. 1. Staggered grids with discretized points of velocity and stress com-

v, 1drr,) 1ty J7yy
— fZ , (3) ponents.

—_— = +_ JR——
Pot =% or r 90 | oz

v shear stresses are sampled at the cell edges. The velocity
t2p— ar "+, (4) components are discretized at the center of each cell face. If

oT, 1(rv 1 v ov
rr )\|:_ ( r) + 0 Z

at r or r a0
the problem to be solved is in the domainrgfi,=<r=<r .
37002)\ 1 9(fvr) 1 vy & ﬁ+3% 0<0<0. 0<z=<z,,, and we want to discretize the
at rooor r 96 MY 7Y 0 problem intoj maxX I maxX Kmax CEllS, then the grid points are
located at
+ 099, ©) . . .
rjzrminﬂAr, =012 ... jmax:
a1y, |1 d(rvy) L1 1 é’va 802 i dv, N 6
% oMY o T e Maz 972, (6) 6=1A6, 1=0,12... |na
dTr g 1 v, 7 Vg and
ot Mr e a9 @ z2=kAz, k=0,1.2... Knax
ar v, where Ar=(rmax—rmin)/jmax, A b= Onaxllmax.and Az
z:M(_ Z) +0,,, (8)  =Zmakmax- According to the staggered grid scheme, the
g gz or field unknowns are sampled as follows in the spatial and
and temporal domains:
974, v, 1 dv, Taal 1K) = T00(F 1 12,011 172,24 172),
Moz T e 9 © - "
T3, LK) = 7,(r 6 4112, 2) s
where f, (a={r,0,z}) is a force source, andg,s N h
(a,8={r,0,2}) is a stress sourcé.iu et al, 1996. In the o, 1LK) = 704(r, 01, 2412)
numerical simulation, we use (LK) = (0 12, 61,22),

ol YL k) =0t A (2014 12:Zcr 172

n+1/2(J | k) n+1/2(

Jaalr /)= iF(t)cos{m@)é(r—row(z ) (10
to simulate a multipole ring source of order in a fluid, 172,01 Zict 1),
whereF(t) is some source time function anrd=r, 6,z. All and
the other source terms are set to zero. n+1/2( | k)= n+l/2(r_ 0 )
To solve the problem using FD, we discretize the partial LK = 1112 P14 120 Sk
differential equations(1)—(9) using central differencing wheren is the index for time anhAt. Note that if an un-
scheme with staggered grig¥ee, 1966; Madariaga, 1976; known is located at any integer grid point in a direction, then
Virieux, 1984, 1986; Levander, 1988Figure 1 shows one the corresponding index for the unknown is from O to the
cell of the staggered grids, where the three compressionahaximum number of points in that direction. If an unknown
stress components are located at the center of the cell and tiglocated at a half grid point in a direction, then the corre-
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sponding index for the unknown is from O to the maximum 9?D

number of points minus one in that direction. It can be W=CZV2<D (14
proved that with the central differencing on the staggered

grids, the approximation made in discretizing the equation@nd

is of second order accuracy in terms of the grid g$izaflove, 25
1995. Due to its complexity, we have not seen yet any pub-  — " _ g2y2p_ (15)
lished stability criterion for the FD scheme in cylindrical at?
coordinates. An empirical strict requirement would be Using Eq. (13, the above wave equations can be further
1 expressed in terms of the velocity components in cylindrical
Ats< = = = (1)  coordinates as follows:
Cmax\/(Ar) +(rminA 0) +(AZ) 5
according to the literatures for rectangular coordinates, if the i cf =c? 1 alrvo) + = 1 v, — 4+ —= avz (16)
maximum wave velocity in the medium S,.,. However, at roor rae
our experience shows that this criterion can be relaxed. Fur- PPA, 1dv, v,
ther research is needed on the stability criterion of FD in —==— 2(——— —) (17)
L . at r d6 0z
cylindrical coordinates.
9°A v,
at = ( 07Zr a a_rz) (18
II. BOUNDARY CONDITIONS
The treatment on the exterior boundaries has alwaygJlnd
been an important issue for FD in simulating wave propaga- I°A, Ll 9) v
tion problems. A good absorbing boundary conditi&C) o2 Yl o a6 (19

not only reduces the requirements of the simulation time and_, . o
y q %lnce the compressional potentialand the three cylindrical

computer memory, but also guarantees that the solution i s of the sh tentakati led |
not contaminated by boundary reflections. In this section, w&OMPONeENts of the shear potentasa |sfy_unpqup ed scaiar
wave equations, we can treat them individually by the

ill h lly th I
will summatize the boundary treatment, especially the imple, scheme of Lindman’s ABC. We used the following modified

mentation of Lindman’s ABC for the 3-D cylindrical elastic
wave propagation problem. IF_)rr;%rlz:;]n.s ABC scheme for the 3-D cylindrical coordinate

We implemented both Liao’s ABCLiao et al, 1989,
and Lindman’'s ABC(Lindman, 1975; Randall, 1989; Chew, od
1990 in the 3-D FD code. Lindman’'s ABC is superior to EJr
Liao’s ABC since it has smaller reflections. However, it is
applicable only for media homogeneous near the boundarand
Liao’s ABC is used for boundaries &t z,, and z=z,,
because the medium is inhomogeneous and the wave inci- ﬂ (‘N' q’) E hw 21)

&d) 0]
ar 2r

) % (20

1

. . . +s
dent angle is small over those end regions. It is well-known ot

that Liao’s ABC is good for small incident angle and is easywhere\lf represents shear potentidls. A, andA.  respec-
to implement. However, Liao’s ABC is not adequate for the . P PO P Ao, z» €SP

. . t|vely and the correction functions hg and
outer radial boundary at=r,,, although available as a } m
choice for the boundary condition in the code. Lindman’s ‘P {hA hAgm'hAzm} satisfy
ABC is implemented for the =r ,,, boundary, since it ab- 5 5

g, 0 9°hg he Pl obd D

sorbs waves very well up to an incident angle of 89°. The " B2 — o2 ( +c—) 22)
formulation of Lindman’s ABC for elastic waves is based on ot2 me 2 me 572\ Car T o
Randall's work in 1989. Here we expand the idea to a 3-D
elastic wave propagation problem in cylindrical coordinates2nd

Consider an isotropic, homogeneous, elastic medium 2, 5h 5
. . g v v d av v
with compressional and shear velocitiesand s, respec- P Bt —— =S| s—+s=—|, (23
tively. The velocity fieldv satisfies the vector wave equation ot? 9z° dz=\ ~or " 2r
2y respectively, wherea,,B, with m=1,2,3 are constants
—2=C2V(V-V)—SZV><V><V, (120 (Chew, 1990. The implementation of Lindman’s ABC in the
Jt FD code basically consists of three steps. First, E§)§).—
and can always be represented as (19) are used to interpolate the compressional and shear po-
VEVO VXA, (13) tentials from velocity field. Next, Eq$20)—(23) are used to

extrapolate the potentials at the boundary. Finally, (&) is
where® is the scalar compressional potential ahds the  employed to update the velocity at the boundary from the
vector shear potential. If we s&-A=0 and substitute Eq. potentials. In implementing Lindman’s ABC, a strict central-
(13) into Eqg. (12), then the potentials satisfy the following differencing staggered grid scheme is followed in both spa-
wave equations: tial and temporal domains. Thus a second order accuracy in
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/{ was used in the simulation as the excitation source.
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the second derivatives of the Blackman—Harris window
function which is shown in Fig. 3 for 10 kH4d.iu et al,
1996.

FIG. 2. Staggered grids at the outer radial boundary with discretized points

of compressional and shear potentials in relation to velocity and stress conA. Homogeneous fluids

ponents.

We first check FD results against RAI solutions for

o ) , sources in a homogeneous fluid. Figure 4 shows the wave-
space and time is also achieved at the boundary. Figure 2 {§, comparison for a monopole ring source with a radius of

the layout of_ the potential discre_tization points corresponding) 10 m in the fluidA. The center frequency used is 10 kHz.
to the velocity and stress Iocanpns at the b_oundary. Our rerhe solution domain is defined b =0.0025 M, T oy
sults show that thg above ABC implementation works excel-—q 5025 m (0o=100), Znm=1 M (Krna=200), Orpm= 1
lently for the exterior boundary at=r max. (I max=16) with At=1.5 us. The two results agree very well.
The direct arrivals travel at the fluid speed, and no dispersion
is observed. The figure also justifies the use of the ring
source, as we can see in the far-field region, the received
In this section, numerical results will be shown to vali- waveforms are the same as those from a point source. In the
date the finite difference program and to demonstrate applipear-field region, however, the receivers see two arrivals
cations to 3-D problems. In what follows, we use rings as thérom the two sides of the ring, which is exaggerated in Fig. 5
transmitter and receivers in all models. We apply sources t&here we doubled the ring source size. Notice that the num-
the diagonal stress terms all over the transmitter ring. For &er of sampling points in the azimuthal direction is not very
monopole source, the receivers are of the same size as the
transmitter and are vertically located at different positions.
We record the diagonal stress at a same fixed azimuthal T ' ' RPN
angle for all the receivers. For a dipole source, we record the -\ W
radial velocity in the same way as we do for the monopole, e - , ------------------
but the radius of receivers is smaller than that of monopole AV
receivers by one half of the radial grid size. The first 10 T
received waveforms for each figure in this section are nor-
malized individually to give the same maximum amplitude.
The rest of the waveforms as a group for each figure are
normalized by the maximum value of that group. We will
compare the numerical results for cylindrically layered me-
dia with the analytical solutions based on RAl and Liu, N ANV ~—foTD
1995. Three types of materials are used for different cases.
They are fluid €=1500 m/s,s=0 m/s, p=1000 kg/m), v
steel £=5970 m/ss=3120 m/s,p= 7900 kg/n?), and for- % o1 o0z o3 04_os 06 07 08 09 1
mation (€=3000 m/s,s=1100 m/s,p=2200 kg/m). For Timems
reference, we name them as mediémB, andC, respec- FIG. 4. The pressure waveforms calculated by blid curve are com-

tively. The aCOl.JStiC sources used in thiS. study operate 3ared with those by RAdot-dashed lingsor a monopole source in fluid
center frequencies of either 5 or 10 kHz, with a waveform of(source radius= receiver radius= 10 cm, center frequency 10 kH2).
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FIG. 5. The pressure waveforms simulated by @Dlid curves are com-  FIG. 7. The comparison of the_pressure waveforms calculat‘ed b§s§l
pared with those by RA(dot-dashed lingsior a monopole source in fluid ~ Curves and RAI (dot-dashed lingsfor a monopole source in formation
(source radius= receiver radius= 20 cm, center frequency 10 kH2). (medium type:A-C, borehole radius= 10.08 cm, source radius receiver

radius= 4.33 cm, center frequency 5 kHz).

critical when the wave fields are axisymmetrical for a mono-

pole source. However, a coarse grid in such a case allowsf?equency of the source is 5 kHz. The mediumAiC. i.e

larger time step in the simulation. A .
ger P . . fluid A inside the borehole, and soligias the formation. The
Figure 6 is a large homogeneous fluid case with a mono- . )
. - radius of the ring source is 0.0433 m and that of the borehole
pole source. For this case, we useg,=0.0008 m,r pax

DS 1y 100, 40 M o 9, 5,01008 T The parmers oseied wi e sauton
Omas= 4 (| max=2), andAt=1.8 us. The MiNiMUMA,y is gIVen sn=". '

712 (I ma=4) for a dipole source. Note that this model is remaxio-/5400(|8 m_ g)max:nldog)t’_zg‘asx:t'mA ”;in“";ax:?ozl)z’
much longer(4 m) than the previous ongl m), and yet we  max 7 max— /s — 0.6 uS. AGaIN, Omax=m
user nma=0.5008 m. Very good ABC is required at the radial (Imax=16) for a dipole source. Excellent agreement is gb-
boundary for such a model, because the incident fields at thséerved betwe_en the FD and the RAI resul_ts. The reflections
) : : are barely noticeable, because all boundaries have been prop-
boundary are at near-grazing angles. Our experience shows . :
that very large casefoth spatially and temporallyneed to erly takeq care of. The compre.ssmnal head waves are first
be calculated in order to decide if an implementation of anrecorded in the wave trapes InFig. 7. They decay as expected
ABC scheme is acceptable. and travel at the formation compressional speed. No disper-
sion is observed for the head waves. After the head waves,
the Stoneley waves follow in the waveforms. The Stoneley

B. Formation with a borehole waves of the monopole case show some dispersion as they
In Figs. 7 and 8, waveforms are simulated in homogepropaga_\te, as do the fl_exural waves of the dipole source.
neous formations with a fluid-filled borehole for the mono- ~ Notice that the azimuthal gridding becomes coarse as

pole and dipole ring sources. In these simulations, the center
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FIG. 11. Different slotted sleeve models are used for simulation.

the radius increases and the fields simulated far beyond tHd RAI results is achieved. As we can see from Fig. 9, the
borehole are not accurate due to the grid dispersion. In thi¢aveforms are dominantly controlled by the tube modes.
paper, however, we are interested in the wave propagatiohhere are extension waves traveling along the pipe in the
and scattering phenomena near the borehole. All the tran&arly time for the monopole source, but they are too small to
mitters and receivers are located inside the borehole. It i§how up in the figure due to the larger amplitudes of the pipe
obvious that the method may not be used directly if scattermodes.

ers far away from the borehole are involved such as in a  The last model we used &-B-A-C, simulating a uni-
sonic imaging situation. form steel pipe in a slow formation with fluid-filled borehole.

The radii of the medium interfaces are 0.0408 m, 0.0483 m

and 0.1008 m. The dipole result is given in Fig. 10. The

compressional head waves due to the borehole can be ob-
Figure 9 simulates a monopole source in a mediunserved before the flexural waves if we amplify the dipole

A-B-A, that is, a steel pipe in flui. The inner radius of waveforms.

the steel pipe is 0.0408 m and the outer radius is 0.0483 m.

The parameters associated with the solution domain and its

discretization are given as,;;=0.0008 m,r ,,,=0.5008 m IV. SLOTTED SLEEVE MODELING

(Imax=200), Zmax=4.01 M Kmax=802), Omax=7 (Imax=8), The 3-D FD code has been used to model the slotted

and At=0.24 us. Again, good agreement between the FDg|eeve housing of sonic logging tools. In this section, we will

present some of the modeling results. Our focus of modeling

400 . . . e —— s is to show that we have developed a code which can be used

C. Steel pipe in a borehole
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radius= 4.83 cm, borehole radius 10.08 cm, source radius 2.705 cm, FIG. 12. Simulated waveforms of model 1 in fluA with a monopole
receiver radius= 2.58 cm, center frequency 5 kHz). source.
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source. source.

to model and design the slotted sleeves for sonic logginghousing are 0.045 m and 0.051 m, respectively.
Through this initial modeling, we hope to provide some in-  Some basic requirements on the structure of the slotted
sight about the design of slotted sleeves. sleeve models are imposed based on intuition. We require
Some of the slotted sleeve models used in the simulatiothat the slotted sleeves be strong enough to avoid noticeable
are shown in Fig. 11, where the material mappings ar¢permanent deformation under various working conditions.
shown for an azimuthal angle of 90°. The meshes are thearge slots are also avoided, because they might cause the
actual discretization in our simulation models: Although dif- tool to be stuck in a borehole while logging. Of course,
ferent slots can be used for sonic logging, we use rectangularodel 1 does not meet these criteria, but we think that it will
slots in the simulation because of their wide adoption inpe interesting to compare its properties with those of the rest
practice. The slotted sleeves are periodic and infinite irof the models. In the following simulations, the ring source
length in thez direction. For simplicity, we call these models radius is 0.025 m. The receiver radius is 0.025 m for a mono-
described in Fig. 1(l)—(d) as model 1, model 2, model 3, pole source and 0.024 m for a dipole source. The center
and model 4, respectively. Model 1 has 12 uniformly distrib-frequency is 5 kHz. The borehole radius, if applicable, is
uted slots. Each of the slots is infinite in thalirection and  0.105 m. Due to the fine structure of the slotted sleeves, the
spans an angle of 20° in the azimuthal direction. Model 4 hagrid sizes have to be very small in all directions. Vertical and
horizontal slots only, each of which spans 70° and has @adial grid sizes are 0.005 and 0.002 m, respectively. There
width of 0.015 m. The adjacent slots in the vertical directionare approximately 810 sampling points in the vertical direc-
are separated by 0.015 m solid steel and are shifted by 45° fon and 251 points in the radial direction. The simulation
block the direct waves along the pipe. Models 2 and 3 are theange in thef direction depends on source type. For a mono-
combination of models 1 and 4. The vertical slots have gole source, a sector region of 45° is solydiscretized with
height of 0.06 m and all the solid steel sections have a height
of 0.015 m. The inner and outer radii of the slotted sleeve
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FIG. 14. Simulated waveforms of model 3 in flul with a monopole  FIG. 16. The amplified waveform traces of receiverzat3.7 m in Figs.
source. 12-15.
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FIG. 17. Simulated waveforms of model 3 in a slow formation with a FIG- 19. Simulated waveforms of model 1 in flidwith a dipole source.
fluid-filled borehole.

scattering of the slotted sleeves. If there were no scattering
15 point$ with symmetrical boundary condition. For a di- by the slotted sleeves, the wave field traces would be as clean
pole source, the solution range covers 980 pointg with  as those given by Fig. 6 for a homogeneous fluid.
anti-symmetrical boundary condition. The time step size is  In comparison with the other three models, model 1
0.18 us. The computers used for the simulations are SGpives the cleanest wavefornisee Fig. 12 and compare it
Power Challenge Array. Each of the simulations typicallywith Figs. 13, 14, and )Secause the model does not have
takes about 1-2 days on a four CPU machine. In what folany vertical variation. For this case, extension waves exist
lows, we present the modeling results in terms of the sourcednd can be observed if we amplify the curvese Fig.
we used. 16(a)]. The extension waves which travel along the steel
strips are not perturbed in such a structure and can be easily
removed by time gating or data processing. However, this

Figures 12-15 show the simulated waveforms of thekind of slotted sleeve is not very practical.

four slotted sleeves in fluid. Note that for these figures, the For a realistic slotted sleeve model, horizontal structure
first 24 waveforms are normalized trace by trace to give thenust also be used. In model 2, the vertical and horizontal
same maximum amplitude of one, while the rest of the waveslots are used alternatively. Its simulated waveforms are
forms as a group in each figure are normalized by the maxishown in Fig. 13. The horizontal slot sections are seen by the
mum value of their group. If we compare the waveforms ofpropagating wavefields as impedance mismatches, and stron-
these slotted sleeves with those of a steel pipe as shown ger scatteringgripples can be observed in the waveforms.
Fig. 9, we see that the major waveform variations here ar&nlarged waveform shows that the extension waves are
caused by the direct arrivals in the fluid instead of the tubesmeared and delay¢dee Fig. 1€)]. Such signals cannot be
waves. The slotted sleeves have effectively destroyed theasily removed by time gating or data processing. However,
tube waves which would otherwise manifest themselves as iwe can reduce them by using more horizontal slots as shown
Figure 9. The small ripples on the waveforms are due to thén model 4. The simulated results based on model 3 are given

in Fig. 14, and an amplified curve is shown in Fig(d6

A. Monopole source
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FIG. 18. Simulated waveforms of model 4 in a slow formation with a
fluid-filled borehole. FIG. 20. Simulated waveforms of model 2 in fluldwith a dipole source.
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FIG. 21. Simulated waveforms of model 3 in fluldwith a dipole source.

FIG. 23. The amplified waveform traces of receiverzat2.55 m in Figs.
As we can see from the previous results, the use of hori19-22.

zontal slots can efficiently delay the waves caused by the
slotted sleeves. However, there are drawbacks associatefl the vertical slots, the length of the solid steel junctions
with the horizontal slots. The percentage of the slotted arebetween the slots sections, and the number of slots in the
over the pipe surface in a horizontal slot section is muchvertical slot sections. Similar results have been consistently
smaller than that in a vertical slot section because the lattesbserved, with model 3 giving the smallest ringing.
can have much longer slots. The wave fields due to the pipe
modes become stronger as more horizontal slots are useg. pipole source
This phenomena can be observed from the results of model 4 . . )
in Fig. 15 where no vertical slots are used. ' For a dllpole. source, the simulated Waveform.s in the
Figures 17 and 18 are the simulation results for models &uid A are given in Figs. 19, 20, 21, and 22, respectively, for
and 4 in a homogeneous slow formation with a fluid-filled slotted_sleeve models 1-4. Thg first fifteen waveforms in
borehole. The waveforms are comparable with Fig. 7 excepiiese figures have been normalized trace by trace, while the
that ripples show up in the wave traces due to the slottedeSt Of the waveforms as a group in each figure are normal-
sleeve scatterings. All the ripples seem to travel at the sam@€d by the maximum value of their group. From these fig-
speed as the compressional head waves. This is because H&S: We see that the pipe waves have been reduced and
strongest scatterings occur near the source point, and all ti¢layed by the slots. Thus, the weak direct arrivals in the
scattered fields, once coupled into the formation, start tdluid are clearly seen. However, unlike the monopole case
propagate at these speeds. Here, model 3 is shown to gi\giéscussed prgwously, the .slotted sleeve effects on the wave-
less ringing after the compressional head waves than mod£&grms vary widely 'dependlng on the slotted s'Ieeve structure.
4. Thus, model 3 gives a better performance in a borehole  FOr model 1(Fig. 19, the s'lender steel strips are seen to
structure for a monopole source. For model 3, slightly dif-excite strong flexural modes right after the direct fluid arriv-
ferent structures have been simulated by changing the lengf}{S: @nd extension waves are observed on the nonaxisym-
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FIG. 24. Simulated waveforms of model 3 in a slow formation with a
FIG. 22. Simulated waveforms of model 4 in fluldwith a dipole source. fluid-filled borehole.
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been extensively validated by the solution of real axis inte-
350 gration for various layered media. Excellent agreement is
achieved for all the test problems.

We have applied the code to model some typical slotted
sleeves for sonic logging tools. Different slotted sleeves are
found to vary widely in delaying and attenuating the pipe
waves. Based on the simulation results, new slotted sleeve
structure with three horizontal slot sections for every vertical
S slot period is proposed for better performance. With this new
slotted sleeve structure, both the compressional head waves
and the borehole flexural waves show up well before the
50 scattered fields of the slotted sleeve for a dipole source. A

N o T e e e e e e . )
% dipole source is found to produce much cleaner than a mono-
o : .
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FIG. 25. Simulated waveforms of model 4 in a slow formation with a
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A recursive Green’s function technique for acoustic scattering
from heterogeneous objects
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A fast, efficient algorithm for computing acoustic fields scattered by inhomogeneous objects in an
otherwise homogeneous space is presented. The algorithm, called the Recursive Green’s Function
Method(RGFM), constructs the domain Green’s function by recursively combining known Green’s
functions from smaller subdomains. The fields on the scatterer surface are then computed using a
boundary integral formulation. Proper implementation of the RGFM results in a storage requirement
of O(N) and computational costs @f(N%?) andO(N?) for two- and three-dimensional problems,
respectively, wherd\ is the total number of discrete points in the inhomogeneous region. Results
are compared with those obtained from exact solutions to show the accuracy of the method.
© 1998 Acoustical Society of Amerid&0001-496808)00602-X

PACS numbers: 43.20.Fn, 43.30.GANN |

INTRODUCTION firm theoretical basis for the method and demonstrate its ap-
rplication to two- and three-dimensional acoustic problems.

Determining the behavior of acoustic fields in and neaﬁ\nalysis shows that the computational costs of the algorithm

inhomogeneous domains finds practical application in SucareO(N3/2) andO(N?) for two- and three-dimensional prob-

areas as medical imaging, geophysical exploration, seismicC : : .
. . ging, geophys| b Iems, respectively, wherdl is the number of cells in the
engineering, and underwater acoustics. For complex, hetero:

! . : discretized domain. The storage remainsOgiN) for both
geneous geometries where closed-form soluficar® im-

) . . . _cases. Computational examples are provided which show the
practical, such analysis must be performed using numerlceﬁ

schemes such as the finite elem@htiinite difference™* exibility of the method in modeling general material pro-
boundary integral® T-matrix” and multipole expansiér? files. Where possible, comparisons are made with exact so-

techniques. These latter three methods are particularly effhmonS to illustrate the accuracy of the RGFM results.

cient for unbounded domains since their formulations are
based upon integral equations which incorporate radiation
conditions. However, they are typically limited to homoge-1. THEORY
neous or piecewise homogeneous media.

Given these observations, it is evident that a beneficial . e gt T
contribution involves extending integral equation techniquesndle-frequency incident wave field™(r) from a finite-
to efficiently accommodate heterogeneous domains. The difiZ€d mhomoogenequs regidd’ embedded in a homoge-
ficulty with this concept is that the Green's function for the N€0US spacél®, as implied in Fig. 1. Throughout the deri-
inhomogeneous region must be known to apply the boundargat'on’ we will use the notatiod() to represent a domain
integral equation&’ This Green’s function generally cannot Poundary. A pressure wave’(r) propagating in either re-
be determined analytically, and therefore must be condion is governed by the general Helmholtz equation
structed using numerical schemes which are typically com-
putationally costly, making this approach impractical for (V- p Yr)V]+p Hr)k3(r)}P?(r)=0, (1)
most realistic configurations.

The goal of this paper is to present an efficient schemeW

kggvg,l,, 1alsf the Ret(.:urstlxe GGree,n's% FltJ_nctlop Me;]hOdrepresent the spatially varying wavenumber and mass den-
( ),~* for computing the Green’s function of an inho- sity, respectively.

mogeneous domain and subsequently using it to compute the To facilitate the solution to Eq(1), we define the

fields scattered by and internal to the object. The teChniqueGreen’s functionG(r,r’) which is a solution to the equa-
which finds root in one-dimensional optical Waveguide,[i ’

analysis*~* incrementally constructs the desired solution

by cleverly combining Green’s functions for smaller do-

mains. The algorithm is similar to the T-matrix method, par-  {V-[p~ (N V]+p H(N)KA(N}GY(r,r')=—8(r—r'),
ticularly the Nested Equivalence Principle Algorithm ()
(NEPAL)*8 for electromagnetic modeling. However, the

present formulation differs from NEPAL in the selection of where §(-) represents the Dirac delta function. Use of Egs.
boundary conditions on the Green’s function which simpli- (1) and(2) in conjunction with Green’s integral theorem al-
fies the derivation and application. In this paper we provide dows expression of the solutioR?(r) of Eq. (1) as

The problem of interest involves the scattering of a

here y=i,0 for re Q"°. The parameterk(r) and p(r)
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FIG. 1. Inhomogeneous domaiil embedded in an otherwise homogeneous
regionQ° along with the divisions required for the RGFM.
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wheren’ represents the outward normal coordinate(Xb —o—o oo+
andp, is the constant mass density 6. (b)

. . FIG. 2. (a) Horizontal and(b) vertical combining of two-dimensional do-

A. Green's function construction mains to make a single composite domain using the RGFM equations.

If the Green’s function§s' andG®° are known, then Egs.
(3) and (4) may be solved for the fields oaQ' using a fer only by a homogeneous solution of E@). Similarly,
numerical approach such as the boundary element méthodGpq, P# 0, must be a homogeneous solution of E2).in its
The difficulty here is that the Green’s functig®' for the  first argument. As discussed in Appendix B, these homoge-
inhomogeneous domain is difficult and costly to constructneous solutions can be constructed from the subdomain
To facilitate this construction, consider subdividing the do-Green’s functions, resulting in
mainQ' into N small subdomaing),, 1<p=<N, as implied
in Fig. 1. We _WiII assume that With_irﬂp_, k(r)=kp_an(_j Gpp(r,r’)sz(r,r’)Jrj Gp(r,r")App(r”,r)dr”,  (6)
p(r)=p, remain constant. Also, to simplify the derivation, B
we will assume thalG, satisfies homogeneous Neumann
boundary conditions 0AQ,. Appendix A provides expres- qu(r,r’)=f Gp(r,r")Apg(r”,rdr”,  p#q,  (7)
sions forG,, for two- and three-dimensional domains. B

Consider now the scenario shown in Figa2where the ~ where theA, represent unknown functions.
Green's functionsG; and G, are known on two adjacent To solve for the unknowr,,, we must apply the con-
domains{}; and , with interfaceB=Q,N(,. Let the tinuity of the expressions in Eq&) and(7) and their normal
Green's functionG(r,r’) for the composite domairf)  derivatives orB. To begin, consider the conditibh
=(,UQ, be divided into four parts according to the defi- 1

= 19
nition Gpq(re.')=—==Gqqrs.r"), 8

oo o bq 1
Gpg(r,r")=G(r,r'), rey,r'eQy, (5) .
whererge B, p#(q, andn represents the coordinate normal
wherep,qe[1,2]. SinceG,, and G, satisfy the same dif- to B. Application of this expression to Eq&) and (7) re-
ferential equation, their first argument dependence must difsults in the relation
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' 1 9 representation oB is a subset of that oa(), or 9(). This
lim J — ——Gp(rp, ") Apg(r”,r")dr” expansion can be written as
rp—rg’ BPp an
19 Gp(r,1") =2 Gp.mntlm(N (1), (15)
= lim f = Gl g I")Agg(r”,r)dr”, ) P o
rq—rg’ B Pa an
wherer, approachesg in the direction ofn from the side of Agqlrer')= ; Aqq,ij ¥i(re) ¥i(r'), (16)

Q. Note that the homogeneous Neumann boundary condi-
tion has been used to eliminate the ter@y(rg,r')/on  where the coefficientg, , are elements of the matrig,
from the right hand side of Eq9). The normal derivatives obtained from
within the integrands in Eq9) are more difficult to evaluate _oly o1

. . . . gp_S HpS ] (17)
since the source poimt’ is already on the interfac® as the
observation points approadd. To illustrate the procedure , ) )
for evaluating these derivatives, consider the case where ~ Hpmn= J'm LQ (1) Gp(r,r") g(r")drdr’, (18
=x such that the boundaty lies parallel to theyz plane. In P
this case, we can use the jump condition ®p which re-

quires that’ Sn= anlﬁm(f)lﬂn(r)df- (19

Given this representation, it is clearly advantageous to use
colPp orthonormal basis sets in order to avoid computatio of.
, , With this notation, letg, represent the matrix of coeffi-
=—aly-y)éz=2"), (10 gients for whichr, r’'eB and g represent the matrix of
where r*= (X' +€,y,2). Now, consider the case where coefficients for whichr e B andr’ &Qp. Then the solution
p=1 in Eq.(10) and letr’ approach the interface coordinate of Eq. (14) results in
r”. Since the observation poimt™ in the first term of Eq. — = g~ ~
(10) will reach the interface before the source paihin the 3q= ~(Gp+dq) "Gq= ~Tdg- (20
limiting process, application of the homogeneous Neumaninserting this result into discrete forms of Eq$) and (7)
boundary condition will cause this term to vanish. In con-and using Eq(12) results in the matrix expressions
trast, the observation point of the second term will arrive ~pon
at the interface after the source point, in which case the Neu- 9= %~ 9 T9p. (21)
mann boundary condition will not apply. A similar argument _ At
0 Opq=0LT0q,, (22
can be made for the case where 2, resulting in the general Pa P ¥4
expression wheret denotes a transpose. Note that these results imply
construction of the Green’'s functio® based only upon

d
- a_xGP(rP I =+8(yg—y")8(zg—2"), (11) knowledge ofG; andG,.
P

A R

lim
rp—»rB
where the upper and lower signs are usedderl and 2,
respectively. Similar derivations can be completedrfery

B. Recursive construction

andn=z. Substitution of these results into E§) provides The above development indicates how to combine two
the result unit section Green’s functions into a new Green’s function
for the composite domain. This approach forms the basis for
Apa(Te:r")=—Aqq(rs.I"),  P#Q. (120 a recursive procedure to systematically construct the Green’s
The next step in the derivation requires enforcing conti-function for an arbitrary domain. The simplest procedure in-
nuity of the Green’s function oB, or volves starting with unit cells which use only one basis func-
) , tion per side or face. To obtain reasonable accuracy, these
Gpa(re 1) =GCqq(re.r')- (13 ynit cells should have a maximum dimension)df.0 per

Using this relation on the expressions in E@.and(7) and side, wherex is the sound wavelength in the medium. If the
utilizing the result of Eq(12) generates the integral equation material composition is complex, even smaller cells may
have to be used to accurately model rapid variations in the
Gy(rg.r')= _f [Gp(rg I")+Gq(rg "] medium parameters. For two-dimensional problems, the
B methodology consists of grouping the unit cells in the do-
S A (F".r)dr” (14) main into adjacent pairs, an_d then cqmbining these pf’iiI’S us-
agt’ ¢ k ing Egs.(21) and(22) as depicted in Fig.(@). The resulting
which must be solved for the unknown functidg,,. To  regions are then again grouped and combined with adjacent
perform this solution, we project theandr’ dependence of domains, as implied in Fig.(B). This combining scheme can
G, and G, and ther’ dependence oA,, onto basis sets be recursively repeated with the newly formed Green’s func-
complete on eithep(), or 9Q),, and ther” dependence of tions until the composite Green’s function for the entire do-
Aqq ONto a basis complete dB. For simplicity, we assume main has been constructed. A similar recursive combining
the basis functions are of compact support, so that the baspgocedure can be performed in three dimensions.
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It is important to recognize that if only the fields exter- _ 1 aGo(r,r")
nal to the domain are required, then at each combining step gg,= —f f _wm(r)apn(r’)—,deS, (28
the points internal to the domain can be discarded, so that PoJaa'J 0! an
only Green's functions with source and observation points
on the domain boundary are computed. With reference to gﬁm=f | o w(D) ge(r)GO(r,r’)dSdS, (29
Fig. 2(a), this means that points d& need not be computed. a0t o0

If fields internal to the domain are desired as well, then

Green'’s functions with observation points internal to the do- Umn= Lﬂiwm(r)w“(r)ds’ (30

main must be preserved and updated at each combination

step. Pinc:J W (r)PinC(I’)dS. (31)
This discussion reveals that the RGFM is similar to m "

NEPAL'**%in that both methods use a nested recursion CoNfyersion of Eq.(27) results in the solution of the fields on
cept to transform a volume scattering problem to a surfacge poundary. These solutions can then be used with discrete
one. However, unlike NEPAL, the RGFM recursion works orms of Eqs.(3) and (4) to obtain the fields at any desired
on the Green’s function with carefully chosen boundary conygcation.

ditions rather than the isolated T matrix of subscatterers.

This difference allows simplification of the formulation,

avoids requiring expansion of the scattered fields in terms of

cylindrical and spherical harmonics, and results in interac!l- COMPUTATIONAL COMPLEXITY

tion matrices T in this developmentwhose sizes corre- Consider now the computation of the fields exterior to a
spond to the number of interface points Brather than the  gqyare two-dimensional domain discretized iNtaells with

number of boundary points o#),. This latter benefit al- [\ cells per side. The cost of computing the Green’s func-
lows reduction in the computational complexity of the tons for all of the unit cells i€)(N). The recursive proce-
method, as discussed below. dure requires log/N steps to complete the construction,
where each cell containé=2' points at theith step. The
C. Field evaluation combination of 4 such cells involves two matrix inversions
for the T matrices as well as two evaluations of E(&l) and
(22), with each computation requirin@(K?) operations.
Since N/4K? such combinations are required per step, the

~ Following construction of the Green’s functic®' on
Q', we apply the continuity relations

P(r)=P'(r)=P°(r), (23)  overall RGFM cos(C can be expressed as
1 9P(r) 1 dP°(r) N oo N-1 N
P/(r)= = , 24 = = as (JN-
") p(r) on  p, n (24) C=7 ;O a2 a4(JN 1) (32

forredQ' to Eqgs.(3) and(4). This step, in conjunction with

~ 3/2
the homogeneous Neumann boundary conditionGorre- ~ON", (33
sults in the integral equations wherea is a platform-dependent constant. Since the cost of
solving Eq.(27) is also O(N®?), this represents the algo-
P(r)= % Gi(r,r")P'(r)ds, (25) rithm asymptotic complexity. The algorithm storage require-
o0 ments are dominated by the/8Ix 8N matrix in Eq.(27),

resulting in a storage complexity @(N). In three dimen-
GO(r,r")P'(r") sions, the computational and storage complexities become
O(N?) and O(N), respectively. If the fields internal to the
domain are also required, then the computational and storage
ds, (26)  costs increase respectively ®(N?) and O(N*?) for two-
dimensional problems an®(N"®) and O(N*3) for three-
dimensional domains.

1P(r)= P"(r)— pv fﬁ _
2 o

1 dGO(r,r’)
-—P()————
Po an’

for r e 9Q', where the 1/2 arises due to the singularity in the
derivative ofG°, and “pv” signifies a principal value inter-
pretation for the integral.

Solution of Egs.(25) and(26) can be accomplished by Ill. RESULTS
projectingP and P’ onto the basis functiong,, to obtain

the vectord? andP’, respectively. Subsequent projection of In this section, we illustrate the performance of the

Egs.(25) and(26) onto weighting functionsv,,(r) results in R.GFM In computing the fields sgattered from various inclu-
. . sions. Where possible, comparisons are made with results
the matrix equations ) . . L
from exact solutions for canonical geometries. Numerical in-
iu-g° o P pinc vestigations have shown that use of a five-point Gaussian
| _gsll P’ ol (27) quadrature integration for all required integrals provides rela-
9 _ tively good accuracy. A simple LU Decomposition scheme is
whereSis defined in Eq(19), d' is the recursively obtained used for all matrix solutions. The symbok w/k will be
Green’s matrix, and used to denote the speed of sound in the relevant medium.
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FIG. 4. Scattered normalized pressure fi@dP™ in two cuts through the
cylinder described in Figure 3 with radits=0.8\ computed using the
RGFM and the exact series solution.

a=1.5\ using a 3% 32 RGFM grid. Here again, the RGFM
result compares favorably with the exact solution. For these
computations, the Green’s function construction requires 1 s
for the small grid ad 7 s for the large grid, while the bound-
ary integral equation solution requir@ s for the small grid
and 15 s for the large grid on a HP 9000 J210 workstation.
These times indicate that the cost of performing the recursive
operations is similar to and even less than the cost of the
boundary integral solution.

0.0 . . .
0 90 180 270 360 Figure 4 illustrates the fields internal to the cylinder with
() the same material parameters as used in Fig. 3 but with a
(b) radius ofa=0.8\. The normalized pressure field is plotted

along two different cuts through the center of the cylinder, as
. . , . depicted in the figure inset. The results from the exact series
FIG. 3. Scattered normalized pressure field P¥P™| as a function of Ut | lotted. A b the RGEM

angle for a circular cylindrical inclusion at a distance far from the scatterer SOUtION are aiso po_ €d. As can be seen, the o~ accu-
The background velocity is 2 km/s, the inclusion velocity is 3 km/s, and therately predicts the field features. Such a capability can be

density in both is 2000 kg/fn The cylinder radius iga) a=0.4\ and(b)  important for applications in imaging and inverse scattering.
a=1.5\, where\ is the wavelength of the excitation field.

A. Circular cylinder

As a first test case, consider the simple geometry of § Two-layer circular cylinder
plane wave scattered from a homogeneous circular cylinder. To further test the capabilities of the RGFM, we next
The velocity inside the cylinder is=3 km/s, while the ve- apply it to compute the scattering from the two-layer cylin-
locity in the surrounding medium is=2 km/s. The density der shown in the inset of Figure 5. For this geometry, the
in both regions isp=2000 kg/ni. Because the RGFM for- surrounding medium has parameters=2 km/s and
mulation uses rectangular unit cells, the cylinder surface=2000 kg/ni. The inclusion has parametars=2.8 km/s
must be approximated using a stair-step contour. Fig(ae 3 and p;=2800 kg/n? for r<0.75., and c,=4 km/s and
illustrates the geometry and the results from the RGFM angh,=2400 kg/ni for 0.75\<r=<1.5\. A 32x 32 grid is used
the exact series solutibrior a cylinder of radiusa=0.4\,  for the RGFM computations. An exact solution has also been
where\ is the wavelength in the background medium. Thedeveloped for this geometry by extending the series soltition
scattered fieldP® is measured at a distancdar enough from to accommodate two layers. The normalized scattered field
the cylinder surface that the field variation withbecomes P* at a distance far from the scatterer obtained using the
proportional toe ’X/\r. For this computation, when a 16 RGFM and exact solutions is depicted in Figure 5. Once
X 16 RGFM grid is used, some small error occurs in the plotagain, we see some error in the RGFM result, particularly
most likely due to the stair-stepped cylinder surface. Thismear ¢=180°, which is likely due to the stair-stepped ap-
modeling error can be reduced by using more unit cells, aproximation to the cylindrical surface. Overall, however, the
shown in the curve obtained using a>322 RGFM grid. RGFM very accurately predicts the field behavior even for
Figure 3b) illustrates the result when the cylinder radius is this inhomogeneous structure.
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FIG. 5. Scattered normalized pressure field P¥P™| as a function of
angle for a two-layer circular cylindrical inclusion at a distance far from the
scatterer. The background has velocity 2 km/s and density 2006 kgid
the inclusion has parameters=2.8 km/s andp;=2800 kg/ni for r
<0.75\, andc,=4 km/s andp,=2400 kg/n? for 0.7\ <r<1.5\.

64

C. Synthetic seismograms

The RGFM can also be used to compute seismograms
for acoustic pulse scattering. Consider the geometry shown
in Figure 6, which depicts a square inclusion embedded in an
otherwise homogeneous medium. Two different cases are
considered(1) all four regions in Figure 6 are identical, and
(2) the four regions have different material properties, as
indicated in the figure caption. Again, the surrounding me-
dium has a velocity of 2 km/s and a density of 2000 kij/m

R . . . R . o - m—
ﬁ\ line source excitation emits a pulse whose shape is given o 50 100 150 200 550
y

time (ms)

_ 2 b
o) (t2 ty) exp[_ (t—t,) ] - (b)

o

a? 20?

FIG. 7. Synthetic seismograms for the square inclusion shown in Figure 6
for the two cases described.

¥ 64 receivers at whereoc=2.5 ms and,=4c. This pulse contains no zero
3.125 m spacing [y frequency components, has a bandwidth of approximately
256 Hz, and possesses a dominant frequency of 6@Blm
dominant wavelengih Sixty-four receivers are used to
record the scattered signal. Figur@7and (b) illustrates the
4 synthetic seismograms for each of the two cases described.
As can be seen, the seismograms for the two inclusions are
similar, although the inhomogeneous domain results in a no-
ticeably stronger late-time return due to the strong reflection
from the last interface. This example illustrates the need for

incorporating small-scale variations in the modeling capa-
~—46.875 m— bilities.

200 m @ line source
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D. Three-dimensional scattering: Sphere

FIG. 6._Geometry fo_r computing s_ynthgtic sei_smograms using the RGFM. As a final example, we consider a three-dimensional
In t:g first case, regions 1-4 are identical, with 2.8 km/s andp=2800 problem involving a spherical inclusion with velocit=3

kg/m°. In the second case, the regions have parameters2 km/s, : . . Lo
p1=3200 kg/n, C,=2.3 km/s, p,~2800 kg/m, Co=2.8 km/s, p;=2400 km/s embedded in a medium with velocity=2 km/s. Both

kg/m?, c,=6.3 km/s,p,=2000 kg/ni. The surrounding medium has param- Media have a mass density of 2000 k&y/he sphere radius
eterscg=2 km/s andp,=2000 kg/nf. is a=0.5\, and an & 8X8 RGFM grid is used. Figure 8
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0.8 2p < cogkx)cogky(x'—a
G(I‘,r')z——pz am 3 m ) i m( )]
b m=o Knsin(kp,a)
m mary’
wcod DY cod MY . X=x, (A1)
b b
where
1/2, m=0,
“m7l1, m>o, A2)
k= Vk?— (mmr/b)?. (A3)
: - - If x>x', then the positions ok and x’ must simply be
0 90 180 270 360 reversed in Eq(AL).

o) The difficulty with Eq.(Al) is that it is typically slowly

convergent, and it does not converge whefr’. However,
FIG. 8. Scattered normalized pressure figl#¥ P as a function of angle becf’iuse Of_ the integrable n_ature of this Sing_UIarity’ i_f prpper
for a spherical inclusion at a distance far from the scatterer. The backgrounBasis functions are chosen in E§5), then the integration in
has velocity 2 km/s and the inclusion has velocity3 km/s, and the density  Eq. (18) can be performed on the series term-by-term, result-
in both is 2000 kg/ The sphere radius &=0.5. ing in a highly convergent series for all source/observation
point pairs. Pulse basis functions provide this result, and ad-
illustrates the scattering configuration as well as the resultgitionally are orthogonal so that the mat8x* can be easily
from the RGFM and an exact solution obtained using a seriegetermined. The exact number of series terms required in
expansion?® Once again, we see that the RGFM providesthis case depends upon the dimensianandb. For most
high accuracy, with the error most likely due to the stair-computations where,b=X\/10, typically fewer than four
stepped approximation of the curved spherical surface. Thigerms are needed for the series to converge within 0.001% of
result shows that the RGFM is equally applicable to threeits value. Even using this scheme, however, the representa-

dimensional scattering problems. tion of Eq. (A1) has convergence difficulties when the
boundary integrations occur inand X (i.e.,y, y'=0 orb)
IV. CONCLUSIONS andx=x'. To avoid this difficulty, it is simplest to use the

) . ~equivalent form of Eq(A1) obtained by reversing the posi-
This paper has presented a novel numerical techniqugons of x andy, x’ andy’, anda andb in the expressions.
for analysis of the acoustic behavior of inhomogeneous do- | three dimensions, the Green’s function for a domain

mains embedded in a homogeneous space. The methodology side lengthsa, b, andc in the x, y, and z directions,
uses a recursive scheme to efficiently construct the Greenggpectively, can be expressed as

function of the region using known Green'’s functions from .

smaller subdomains. Boundary integral equations are the ) 4p COg KmX) O Kmp( X' —a) ]
formulated and solved to determine the pressure fields on the("" )=~ pg 24, “m®n Ko rSin(Komrd)

domain boundary for a given incident field. A comparison of

the numerical results with solutions obtained from analytical ><cos< mwy)co\c( m”Y') os( mTZ)
expressions shows that the RGFM faithfully constructs the b b c
Green's function for heterogeneous domains and provides ,
highly accurate results for scattering from various structures. % cos{ nmwz
Additionally, it allows simulation of domains for multiple c
source configurations with an asymptotic computationalyhere
complexity of O(N®?) and O(N?) for two- and three-
dimensional structures, respectively, and a storage require- Kmn= Vk*—(ma/b)?—(nm/c). (AS)
ment of O(N). This allows solution of larger problems with Replacements similar to those discussed above for the two-
less computational time as compared to traditional schemegmensional case can be made in B&) as well.

for analyzing heterogeneous structures.

, X=X, (A4)

APPENDIX B: HOMOGENEOUS WAVE EQUATION
APPENDIX A: GREEN'S FUNCTIONS SOLUTIONS

Consider the rectangular domdih, with sides of length Consider finding a homogeneous solution to E).in
a andb in thex andy directions, respectively. The Green’s the domain ); which satisfies homogeneous Neumann
function satisfying Eq(2) with k(r)=k andp(r)=p being  boundary conditions on all sides except the boundariat
constants can be derived by performing an eigenfunction exx=a). It is important to recognize that EqeA1) and (A4)
pansion in they coordinate® When this series is substituted are homogeneous solutions to the wave equation and must
into Eg. (2), the resulting differential equation ix can be be combined with the forms for=x" to provide the particu-
solved in closed-form?® resulting in the representation lar solutions. Additionally, as indicated by the jump condi-
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tion in Eq. (10), the form for x<x’ does not satisfy the °M. G. Imhof, “Scattering of acoustic and elastic waves using hybrid mul-
homogeneous Neumann boundary conditiorxata if r’ tiple multipole e&(pansions—finite element technique,” J. Acoust. Soc. Am.
. : ; 100, 1325-13381996.
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Calculation of acoustical scattering from a cluster of scatterers

S. Koc® and W. C. Chew
Center for Computational Electromagnetics, Electromagnetics Laboratory, Department of Electrical and
Computer Engineering, University of lllinois at Urbana-Champaign, Urbana, Illinois 61801-2991

(Received 12 May 1997; accepted for publication 15 August 1997

The problem of determining the field scattered by a cluster of scatterers when they are insonified by
a known acoustical field is addressed. The problem is formulated by usidgrtregrix method and

the resulting system of linear equations is solved by using the multilevel fast multipole algorithm
(MLFMA) and the fast multipole method—fast Fourier transfaii@MMFFT) method, and the
efficiency of the two methods is compared. It was observed that, in general, the MLFMA performs
better than the FMMFFT algorithm. However, when the scatterers are distributed uniformly on a
rectangular grid, the FMMFFT algorithm performs as good as the MLFMA. The accuracy of the
methods is evaluated by modeling a spherical scatterer as composed of many small spheres.
© 1998 Acoustical Society of Amerid&0001-496807)00812-9

PACS numbers: 43.20.HAWNN]

INTRODUCTION with known scattering solutions expressed in terms of their

Solution of multiple scattering from a system of scatter-iSolatedT-matrices denoted by; . The problem is to deter-
ers is a classical problem that has preoccupied researchdfdne the field scattered by this cluster of scatterers when
for many years. There are basically two different approachef'ey are insonified by a known acoustical field. The incident
for the solution of this problem. In the first approach thefield is expressed in terms of its multipole coefficients ex-
distribution of the scatterers is assumed to be random and dnded about a poir,
average value of the scattered fi¢lt powe) is sought: >
The second approach is to write down the pertinent equations incr . R
and try to solve the resulting large linear systéth.The Or(rg=2 X

number of unknowns is then proportional g, whereN is , ) . ,
— whereng is the order at which the multipole expansion of the
the number of the scatterers ands the average number of .~ o S : -
ncident field is truncateds,,, are the multipole coefficients,

spherical harmonics used in the expansion of the fields scal™® . . .

tered by the scatterers. The first approach has the advanta is the spherlcz_il Bessel function, argj_: F=hs 1S the vec-
of producing analytical results that give insight to the scat- ' fr<_)m the p(_)lntps to the observation po_lnt, whose
tering phenomena. However, these results are only valid in gpherlcal coqrdlnates areg( 05, ¢s). The spherical harmon-
statistical sense. The second approach, on the other hand, Rty Ynm are given by
produce the scattering solution for a specific distribution of _m) 241
the scatterers. This allows one to model a large scatterer as y_ (g g)—(—1)m (n—m)! 2n
being composed of many small scatterers and a solution to e (n+m)! 4m
the resulting system can be obtained. The basic disadvantage )

of this approach is that the numerical work is excessiveyhere P™(x) denotes the associated Legendre functions as

especially for three dimensional problems. If Gaussian elimi-defined in Ref. 13. The short-hand notatMmﬂ(g) will also

nation is used to solve for the unknowns, the solution timebe used to denote the spherical harmonics whdsea unit

scales as£N)* which quickly exhausts the resource of EVeN, ector whose direction is defined by the spherical angles

a supercomputer. and ¢
IX

Several methods have been proposed to solve the matr A.simpler notation is achieved by combining the two
equation effectively. Many of these methods are summarizeﬁm”Ces n and m into a single indexL:(0,0),(1~1)

in Ref. 5. The purpose of this work is to compare the perfor-(1 0),(1,1),...,6,m),... and Eq(1) can be written as

. Al n(Krs) Yom( 0s, ¢s), (€

n=0 m=—

1/2 )
PT(cosp)e'™?,

mances of the FMM;*° and FF7!*? methods.
Throughout this papes'“! time convention is used. v
d(ry= > 2gV (Krya}, &)
L=(0,0

|. PROBLEM FORMULATION

A. Geometry and definitions where . 2gWV | (K,rg)=jn(krg)Y.m(bs,ds) are the spherical

. : . wave functions. A further notational simplification is
ConsiderN scatterers located at points described by theachieved by adopting a vector notation as

position vectorsp;, i=1,...N in some coordinate frame,
D"(rg) = 2gW(K,r) -8, ()
dPermanent address: Department of Electrical and Electronics Engineering,
Middle East Technical University, 06531, Ankara, Turkey. where
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ZgW K1) =[.29¥ 00(K,1) 29V 1 _1)(KT) S
AV kT =2 2 2V, (KT ) Byunm(K.Tjs),

29V 10(kr)  2g¥ (k) -1, (5 v=0pu=-v 11
_raS s s s Lt
a=[apg A1-1 B1o &1y I\ (6) whererjs=r—r;=p;—ps is a vector from the source point

and (-)! denotes the transpose of the vector. In this notation'fo the position of thgth scatterer. This relation is valid at

the field scattered by thigh scatterer is any observation point. The coefficients are

N n ) n+v
@;ca(ri):qrt(k,ri).blzgo m;n b hi(kr)) @ypnmf(KoT) = > i(v+n’,n)Yn/’m7M(al(ﬁ)hgll)(kr)
n’=|n—y|
><Ynm(@i y¢i)r (7) " Ly 477(2n+ l)(21/+l) 12
wherer;=r—p; is the vector from thdth scatterer to the =1 (2n'+1)

observation point andwgl) denotes the spherical Hankel

functions of the first kind. It must be noted that the multipole X (nv00/n¥n’0)
expansions of both the incident and the scattered fields con-
tain infinitely many terms. However, these expansions con-
verge rapidly and they are truncatedrgtand n;, respec-
tively. The error bounds in these truncations are discussed Where (1j.mimy|j1j2jsms) are the Clebsch—Gordan coef-

X(nv—mu|nvn’—m+pu), (12

Ref. 14. ficients as defined in Ref. 13. Thcoefficients are obtained
The total scattered field can now be written as by replacing the spherical Hankel functions of the first kind
in Eq. (12) by the spherical Bessel functions.
N
dsa= > Wik,r)-b'. (8
=t C. T-matrix formulation
Each term of the above summation is an outgoing multipole  The T-matrix of a scatterer relates the field scattered
expansion at a different point with from the scatterer to the incident field only when the scatterer
is present. When there are more than one scatterer, multiple
‘I'L(k,r)=h§11)(kr)Ynm(9,¢) (9) scattering between the scatterers occurs. The following ma-
trix formulation of scattering from many scatterers is pre-
being the outgoing wave functions. sented in Refs. 4, 5, and 17.

To obtain a solution we must express all the fields in Eq.  The total field due tdN scatterers can be written as
(8) as multipole fields expanded at the position of fltle
scatterer. This can be achieved by using the addition theo-

. N
rems for the wave functions.

O =DM+ PS= 2gWi(k,ro)-as+ >, Wik,r;) b,
i=1

(13
B. Scalar addition theorem

An outgoing wave function with the origin at the posi- whereb! are yet_ to be determingd. Conside_r' a single term in

tion of theith scatterer can be expanded into a sum of reguJEhe summathn |n'Eq.13). By using the addition theorem to
. i o i express the field in the coordinate frame of {lie scatterer

lar wave functions with the origin at the position of tfih we get

scatterer, since these fields do not have a singularity; at

This expansion, known as the addition theorem for the scalar

wave functions, is given below:'®

\vt<k,ri>-bi=% W om(K,F) bl

VoK)= 2 2GV (K@, (K ), :
v=0 u=—v “ ® :2 [2 _%jg\lfm(k,rj)a,,ﬂynm(k,rji)]b'nm
(10 nm | vu
whererj; =r;—r;=p;—p; is a vector from theth scatterer to _z - 2 i
the jth scatterer. This relation is valid provided that T AQY (KT 20 (K0T i) By
Iril<lrjil-
Similarly a regular wave function with origin g, can (14
be expanded into a sum of regular wave functions with ori-
gin atr; as We define the matrix
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aoo0dkilii)  ago1-1(Krji)  ago1dKrii)
— ay_10dK i) ap_1.1-1(K i) ag_1.1dK.ri)
a(k,rii)= 1, 1,0,({ ji 1-1;1-1 ji 1, 1,1,({ ji (15)

aio.0dKirii) ai.1-1(K,rji)

With this matrix notation we can now write

Wi(k,rp)-b'=2gWi(kr))- a(kr;)-b, (16)
and
ZgW(k,re)-a°=72gW(k,1})- B(K,T}s)- &, (17)

where is defined similar tax. The matrixa transforms the

scattering coefficients of thigth scatterer to the reference

frame of thejth scatterer, and similarly the matr'Ede—
scribes a transformation from the source to jtiescatterer.
Using Eq.(16) and Eq.(17) in Eq. (13) gives

N
<I>=%g‘l"(k,rj)-ﬁ(k,rj:)-as+2,l FRgW(k,r;)- afk,r;;)- b

i#j

Incident on the jth scatterer

+W(k,r;)- b,
[ —
Outgoing

(18

The last term on the right hand side of Ef8) represents an

outgoing wave which is singular @ expressed in the coor-
dinate frame of thgth scatterer, and the other terms repre-

aLaLkoﬁ)

as a block diagonal matrix formed by the isolafiednatrices
of the scatterers,
— ;(k,fij),
Al. =
Tl PR

{b};=b' and{a};=B(k,ris)- &, Eq.(19) can be written as

i#],
(22)

b=T-(a+A-b) (23

[1-T-A]-b=T-a (24)

In iterative solution of matrix equations, the product of
the conjugate transpose of the coefficient matrix by the vec-
tor is also required which can be written as

N
{[T-T-AJ"b}j=bl= 3 @(k,ry)-T'-b,

i=
i#]

(25

where ()" denotes complex conjugate transpose of a ma-
trix. It must be noted that certain relations exist between
a(k,rj;) andaﬂ(k,rij) some of which can be found in Refs.
15 and 18.

Equation(20) constitutes 7#=3;_,Nu; equations with

sent incoming waves impinging upon it. Therefore, these”Z Unknowns and can be solved by using various linear

fields must be related by the isolat&dmatrix, T;, of the
scatterer, i.e.,

N
bi=T;| Bk,ris)-a+ >, a(k,r) b,
=1

i #]

i=1,...N, (19)

which constitutes a set & matrix equations for thél un-
known vectord'. Eq. (19) can be written as

N
bl =T} 3 ak,r)-b'=T; Bkrjs)-2"
i#]

i=1,...N, (20)

which is more suitable for iterative techniques.
Using the notatior - };; to represent théj th block of a
matrix and defining

Ti! i:j,

{T_}ij: 0, i#], (21
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algebraic techniques, whegg=(n;+1)? is the number of
harmonics required to represent the field scattered bytkthe
scatterer. If Gaussian elimination is used, the required num-
ber of operations is proportional to7°. In a three dimen-
sional problem, the number of scatterers, hengg in-
creases very rapidly and the solution time and memory
requirements quickly swamp the resource of even a super-
computer. Hence, an effective solution method is highly de-
sirable.

II. ITERATIVE METHODS

Iterative methods are techniques that use successive ap-
proximations to obtain more accurate solutions to a linear
system at each step. The iterative methods are generally clas-
sified asstationaryandnon-stationarymethods. These meth-
ods are discussed extensively in the literaf3r&. The rate of
convergence of an iterative method depends greatly on the
spectrum of the coefficient matrix. In general, the non-
stationary methods converge much faster than the stationary
methods. Most of the non-stationary methods rely on special
properties of the coefficient matrix such as symmetry and
positive definiteness. The conjugate gradient normalized re-
sidual(CGNR) method is quite general and can be used with
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arbitrary coefficient matrices. However, the convergence rat€3) Disaggregation.Translate the accumulated effect of all

of CGNR is relatively slow due to the squaring of the con-  the other groups at a group center to the position of

dition number. scatterers. This step is quite similar to the aggregation
Theoretically, the CGNR method will converge to the step and requiregm\jmm operations.

exact solution in# steps. In this method, each iteration step(4) Near Interactions. Finally, calculate the interactions of

requires two matrix-vector multiplications and three vector  the scatterers within the same group directly. This step
updates. Normally, each matrix-vector multiplication re- requires~?NM operations.

quires?(.#/?) operations. Thus the total number of opera- _ _ . _
tions is still proportional to #3. However, if the iteration is  In order to obtain an optimum algorithm, the computational

stopped whenever the condition load of these steps must be balanced. If we assMmeN*,
the value ofx that minimizes the complexity is found to be
Irl 3/5, or?(N®5) operations per matrix-vector multiplication is
i < tol required. Thus, if an iterative method is used and if the re-

L quired number of iterations ig, then the problem complex-
is satisfied, where tol is an arbitrary tolerancgsy—A-X, ity increases only byyN®®. The dependence qf on N for
is the residual, and, is the solution at thath iteration step, Helmholtz problem is hard to determine.
then the convergence can be achievegh .7 steps. The The algorithm complexity can be further reduced if
number of operations required to solve the system will therplane wave expansions are used for translating an outgoing
be proportional to p//é2=p[m\|]z, where M_Z(l/N) multipole expansion of a group to the center of another
X Z,(n;+1)? is the average value of the required number ofgroup, since in this case the translation of coefficients from

harmonics over the scatterers. one expansion center to another would require a humber of
Another iterative solution can be obtained by iteratingoperations that is proportional to the number of coefficients
Eq. (23) yielding used. This is because each plane wave is translated into a

single plane wave, or the translation operator for plane waves
< is a diagonal operator. Expanding the spherical waves into
b= 2 (T-A)'-T-a. (26) plane wave spectra is, therefore, sometimes referred to as the
=0 diagonalization of the spherical translation operators, or the
This is the Neumann series solution which was suggested ifast multipole method, FMM.
Refs. 6 and 7. The Neumann series will converge whenever

T-A defines a contraction operator, in which case the con-

vergence will be exponential. IV. DIAGONALIZATION OF THE SPHERICAL
TRANSLATION OPERATORS

IIl. GROUPING In the formulation of the scattering problem, we need to
transform spherical harmonic coefficients from the position

To further decrease the order of the complexity of theof theith scatterer to the position of théh scatterer which is
algorithm, the special structure of the coefficient matrix musfgiven by

be used to perform the matrix-vector multiplication in less
than(_#?) operations.

Assume that we divide thi scatterers intdN\/M groups v (k)= 2egW (K ap (Kri),  r<rj;.
each containindl scatterers. The scatterers are assumed to L' 2
be evenly distributed so that each group occupies approxi- (27)

mately the same volume. The idea in grouping the scatterers consider this transformation being done in three steps
is to calculate the interactions between groups of scatterefgom the ith scatterer tor,, the center of the groups,
simultaneously thus recycling information. The algorithm to\yhich that scatterer belongs to, thenr{o, the center of the
perform a matrix-vector multiplication can be considered ingroupf;}\, which thejth scatterer belongs to, then to tft&

four steps as outlined below: scatterer. In matrix form we can write
(1) Aggregation. Translate the outgoing multipole coeffi-
cients of all the scatterers in a group to the group center. ;(kurji)zﬁkvrj)\’) cal(k,ryy) - BK, ). (28

The number of coefficients}, required to represent the
field at the center of the group is proportional to the By expanding the entries of these matrices in terms of plane
square of the diameter of the group, herRe M2?3  waves, it can be shown thé,
Thus the number of operations required for this step is
proportional touRN~ uNM?3, . e~ .
(2) Group interactions. Translate the outgoing multipole @L/L(KFji)=lim %' Yi(k)e™ Nay (k)i YL (K)

coefficients at each group center to local multipole coef- Na—

ficients at center of all the other groups. The number of x ek v dk, (29)
operations required for this step is proportional to

R2(N/M)2~N?/M?3, where
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25, _22 a(k,r;;)-b
ledpies,
i#]

Na . —
an, (k)= 2 im0+ DhD(kry ) Po(k-Tyy), bl =T
(30)

> X alkr) b =T, Bkr)-a (33)

N - +
andk andr, ., denote the unit vectors in the direction of SET i ieT,
respective vectors, and X* denotes complex conjugation.

In order to obtain Eq(29), the order of an integration in which the index of the group which thgh scatterer be-

q infinit i ¢ be ch d which i longs to is denoted by”’. The first sum in Eq(33) above
and an nfinite summation must be changed which 1S n(_)l'epresents the near interactions, which will be denoted by

permissible in the strict sense. As a result, the infinite sum %5 __(j). The last summation contains the bulk of the compu-
eal .

the expression ok...,,, (k) does not converge. However, We iions, and will be denoted I, (j). For this term, we can
need to truncate the infinite sum at soidg for numerical write an element of the matris(k,r) as

purposes. Thus, the series can be truncated first, and then
exchanging the order of integration and a finite sum does not

pose a problem. One must be careful in the evaluation ofy”“'”m(k’r”)

ay ;M(IZ). The number of terms that must be kept in the

summationN,,, depends on the value &D, as well as the = % i "Yam(K)e' Ny o (K)iTY S, (k)el v dk.
desired accuracy, whek is the diameter of the larger of the (34)

two spheres circumscribing the groupg and %, . AsD is
increased, more terms must be used to keep the accuracy
the desired level. On the other hand, if too many terms are

used, the Hankel functions start to oscillate wildly, causing Sfar(j):T_j' f# ek rivy* (k) E ;NQ;A,A(R)

'I(fiQus the far interactions can be written as:

numerical inaccuracies. Since the Hankel functions start to red
oscillate rapidly when the order exceeds the argument, the _ '
condition x >, ek niylk)-bl dk, (35)

ie?,

where the notation
N, <kr,/ (31

. _ Y(K)=[Yook) (=)Y1-1(k)
must be satisfied, otherwise the groups are too close to use .
FMM and they will be referred to as neighboring groups. A (—)"Yom(k) -1 (36)

very good empirical formula foN,, is has been adopted. In a similar way, the far interactions for

the product | —T-A]"-b can be written as
N,=|kD+ C,log(kD+7)|+1, (32
| | Q= $evi) S E k)
where| - | denotes the integer pafi, is a parameter to adjust cedp
the accuracy of the calculations, abds the diameter of the
sphere circumscribing the largest group. x >, ek niylk)- T/ b' dk. (37)
The diagonal forms of the translation operators for the te sy
Helmholtz equation in three dimensions was first described In order to calculateS,(j) and Qs (j) numerically by
by Rokhlin}* The diagonal translation theory was later sum-using Eqs(35) and(37), the integrals must be evaluated by
marized by Epton and Dembdft. using a quadrature rule over the unit sphere. For this purpose
we note that the product formula

2@ (1
3@ f(x,y,z)d§=f f f(6,¢)sin 6 do d¢
V. THE FAST MULTIPOLE METHOD, FMM o 7o
Ny 2Ny
Again consider the grouping of thBl scatterers de- => > wiwt(6;, ) (39)
scribed previously. The scatterers are divided Inj@roups =it
and each group is indexed from 1 kg. The /th group is exact for polynomialx®y?z” if a+ B+ y<2N,, where
containsM (/) scatterers, and the set of indices of scatterer®); are chosen as the Gauss—Legendre poifsare N,
belonging to that group is denoted by, . For each group equally spaced points over the interyat 7, 7], wf are the
we also construct a set”, which contains the indices of the Gauss—Legendre weights, aw;']: 7/Ngy. Since the spheri-
neighboring groups, including the group itself, where thecal harmonicsY (8, ®) are also polynomials of order on
condition for two groups to be neighbors of each other isthe surface of the sphere, the above quadrature rule is exact
given by Eq.(31). In view of these definitions, Eq20) can  for harmonics of orden<2N,. A more efficient method for
be written as numerical quadrature on the sphere is given in Ref. 23.
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The number of sample pointll,,, that must be used for C!  ~2NB~u2NM
i i ; near M I
an accurate integration depends on the harmonic content of

the integrand. Sincery,_.,,/(K) contains harmonics only up gperations, wherd® is the typical number of neighboring

to N,>n+ v, the choice of scatterers. For each scatterer, the number of nearby scatterers
is proportional to the volume of the groups, which in turn is
N,=N,+1, (39)  proportional to the number of scatterers in each group, i.e.,
B~M.
is sufficient for accurate integration. If the group size is chosen to be proportional to e

If the accuracy control parametéZ, , is chosen to be 1, power of the number of scattereid,~NX, then the number
then the relative error in the evaluation of Eg4) is about  of operations required will be proportional &** 23 in the
10%, and each increase i@, by 1 decreases the error aggregation and the disaggregation stepsy® #? in the

roughly by an order of magnitude. far interaction step, and td(**¥ in the near interaction step.

The algorithm for performing the matrix-vector multipli- Since 1+ 2x/3<1+x, to obtain an optimum algorithm, the
cation can now be written as: powers ofN in the far interaction and near interaction steps

1. Aggregation.For each group form the scalar function must be equated, i.e.,
u defined as

2 2 1+ 3 40
——==1+x=x=3
u(k)= 2 e niyl(k) - b 3 7 “o
ie: //

resulting in?(N'%7") operations per matrix-vector multipli-
cation. If the number of iterations required for convergence
is p, the problem complexity becomgaN®”.

at the 2N? quadrature points. Sindé,~kD~ M3, this step
requires

Clgg~ (Ne+1)2N(2N3) ~ uNM??

operations, wherg.=(n,+1)2, n, is the order of the har- A Near interactions

monics used to represent a typical scatterer, ndenotes An important point about the algorithm described above
the average number Of scatterers per group, which can hig that the proportionality constant should be proportional to
written as,M = (1/Lg)=, %, M(1)=(N/Lg). 12=(n+1)*~ (Kama)?, Wherea,, is the maximum linear
2. Group interactions. For each group evaluate the sca- dimension of the scatterers. This shows that as the size of the
lar functionv given by the sum scatterers or the frequency is increased, the number of un-
knowns and the overall algorithm order will increase by a
N E A power of 4. The transformatioa(k,r;;) is in general repre-
U(k)_/et',,,, an, ann(K)u(k) sented by a full matrix. However, a rigid translation of a
coordinate system can also be achieved by first rotating the
at the Z\IE, guadrature points. This step requires coordinate system such that #sxis points to the final point

of translation, followed by a translation of this system along
its z axis, and finally rotating the system to reverse the initial
rotation. The basic advantage of this approach is that the
matrix representations of the intermediate steps are not full
matrices.

Any arbitrary rotation of a coordinate axis can be
achieved by three rotations performed successively by per-
forming a rotatione about thez axis, followed by a rotation
Srar(j):T_j' § ek T Y * (R)p (R)dk B about they a_xis of the resultirjg coordinate framt_a, fol-

lowed by a rotationy about thez axis of the latter coordinate
frame. The three anglas, B, andy are known as the Euler
angles. The notation used is that of EdmoridsThus, if the
matrix representation of an arbitrary rotation is denoted by

2

N 2
Cint ( ) (ZNH) M4/3

operations.
3. Disaggregation.For each scatterer evalug®g,(j) as

using the :Ng gquadrature points. This step requires

Céis~ (N +1)2N(2N5) ~ uNM?3 D(a,,7), we can write
operations.
4. Near interactions. Add the near interactions as de- D(a,B,y)=D(0,0,y)-D(0,3,0)- D(«,0,0), (41)

scribed by the first sum in Eq33). This means that the
effect of scatterers close to a scatterer is computed by trangshere D( D(0,0,)2 8( y) and D(a 0 0)_5( «) are diagonal

lating 1 harmonics of each nelghborlng scatterer to the pomatrices with diagonal elements being drpf) and
sition of that scatterer, requiring? operations. This step exp(ma), respectively. The desired rotation that brings zhe
requires axis along the translation direction can be achieved by
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choosinga= ¢, B=40, andy=0, whered, and ¢ are the valid inside each cell, is obtained by using addition theo-
spherical angles corresponding to the translation direction. rems. As the cell size increases, more terms in the multipole
A similarity transformation can be used to expresg-a expansion is required. The number of multipole coefficients

axis rotation in terms of a rotation about thexis as® required to express the field inside a cell accurately is pro-
portional to the square of the cell edge length.
D_(O,,B,O):5( _ Z,O,O .5(0’_ Z,O .D(B,0,0 2. Downward pass: There are two approaches for the
2 2 downward pass.
- - (i) Barnes—Hut® In this approach, the field expansion at
-ﬁoi,o) ~i§,0,0). (42 the position of each scatterer is calculated directly from the

expansions accumulated at the cell centers. Starting from the
This reduces the problem of computing the matrix represenchildren of the root cel{root cell is the cell that encloses the
tation of any rotation to that of computing the one matrix\yhole cluster of scatteresthe outgoing wave expansion
S£D(0,7/2,0)- D(7/2,0,0). This matrix is a block diagonal accumulated at each cell centexcept for the cell contain-
matrix with number of nonzero entries being proportionaling the scattereris translated to a standing wave expansion
to?* n? . The use of theS matrix does not decrease the num- at the position of the scatterer. This gives the total effect of
ber of operations required for multiplication, however it doesthe scatterers that are in other cells. The effect of the scat-
reduce the memory requirements since only a siglma- terers in the same cell are left for the next level. At the
trix is required for all rotations, along with appropriate diag- lowest level, the effect of scatterers in the same cell are
onal matrices for each particular rotation. It must be notectalculated directly.
that the rotation operations, and hence their matrix represen-  (jj) Greengard—Rokhlif® At each level, the outgoing

tations are unitary. wave expansions of the cells that are not neighbors of the
The matrix representation of the-axis translation, gl in consideration but whose parents are neighbors of the
which will be denoted byZ(r), also has many of its entries ¢rrent cell's parent are translated to a standing wave expan-
as Zef(?z-5 The nugnber of non-zero entries @f(r) is also  sjon at the center of that cell. The standing wave expansion
proportional t8° Ne. _ . of the parent cell is also translated to the center of the current
Using the definitions above, an arbitrary translation caryg) The effect of neighboring cells is left to the next level.
be written as At the lowest level, the effect of scatterers in the same and
— — S — - = — neighboring cells are taken into account directly.
akr)=£%(¢) - £7(0)- S T(r)- S £(0)- S If these methods are used directlye., without diagonaliza-
E($), (43  tion), the Bames—Hut approach results in @tN®>?) algo-

. . . 4 rithm, and the Greengard—Rokhlin approach results in an
and the number of operations increasertjyinstead ofn; . O(N*3) algorithm. By using the diagonalized forms of the

This appro_ach is also applicable for static problems and Franslation operators, the orders of these algorithms can be

presented in Ref. 27. reduced toO(NlogN) and O(N), respectively. However, to
use the diagonalized forms of the translation operators, the

VI. MULTILEVEL FMA, MLFMA condition given in Eq(31) must be satisfied, meaning that

The grouping idea described above can be applied rdhe number of cells left for lower levels is increased. This
peatedly by dividing each group into subgroups. Group sizekesults in an increase in the multiplicative factor of the algo-
at each level can be chosen to minimize the operation countithm order. Since the Greengard—Rokhlin approach has a
It can be shown that the complexity of the algorithm de-lower complexity, only this algorithm making use of the di-
creases ta”(N) as the number of levels is increased. Thisagonalized translation operators will be considered in detail.
idea of nested groups can be best implemented by definingeor Helmholtz wave problems, this algorithm has to be aug-
hierarchical tree of cells which refine the computational do-mented by an interpolation and anterpolation procedure
main into progressively smaller regions. A cubical cell bigwhich will be described next.
enough to contain all the scatterers is defined as the comp
tational domain which will be called the “root” cell. This
root cell is divided into 8 cubical child cells, which are in Assume thaf) levels are used and that the indices of the
turn divided into 8 cells until a desired level of divisions is cells ingth level are denoted hy]q, whereq=0 denotes the
achieved. The set of all cells constructed at a certain level iﬁoot cell and_‘]:Q denotes the lowest level. Let/'mq denote

called a “level” and indexed from 0 upwards. Thus, the FOOihe set of indices of the neighbors of thgth cell including

cell constitutes the Oth level, |t_s 8 children f(_)rms the 1Stitseh‘, Zm, denote the interaction list of thea,th cell, and
level, and so on. In the following, a level with a lower- q

(highe index number will be referred to as a highewer) ffmq denote the index set of th@yth cell’s elements. The
level. The number of distinct cells at levelis equal to 8. interaction list of themyth cell consists of all the cells that
The algorithm consists of two passes over this tree structur@re in the same level and are not neighbors ofrtih cell,

1. Upward pass: Starting from the cells at the lowest but whose parents are neighbors of thgth cell's parent.
level, a multipole expansion in terms of outgoing waves,With these definitions, we can write

lK. Interpolation and anterpolation
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N _ the lowest level, and then the outgoing multipole expansions
xJ=E a(k,rji)-b' for cells in the higher levels are computed. The outgoing
'iijl multipole expansion at a level can be related to the outgo-

ing multipole expansions at a lower level as
= 2 2 akr) b+ 39tm (k)
, Q
m, E]mQ

Mg et m 1€ 2 k)= BTN N ) k
Q!5 Q U, (K) qufmq &' g (K, (49)
XENQ(Q);)\m Am,(ﬁ)umé(lz)dlz where S;/mq denotes the set of the children of cal),. Since
¢ only Kq4 1<K, samples omeq+1 are available at levej+1,
+ 2 jg th,l(R)ZNa<Q—1>;Am N k) the value ofumq can be calcglated only at these points. Its
My 15 7mg_, Q1 Tt values at the quadrature points used for layedan be ob-
o tained by interpolation. Thus, we can write
XUy, (K)ydk+---, 44
o (R) “@
where Mg 0
q Kqul
Up, (k): 2 ei(k-r)\mqi)Yt(k). bi, (45) — E el(knwf}\mq)\qurl) E Wnlnum +1(kﬂ+l),
a ie:’ﬁ’mq Mgy1€ %mq n=1 a
(50)
tmq(k)=Y*(k)e'(k"“mq), (46)  whereW,,,, are the entries of the interpolation matrix.

In a similar way, the l‘unctiornmq
lower level as

_, can be related to a

andr, denotes the center of tineyth cell, and celing_, is

q
the parent of the celing which contains thgth scatterer.
The first sum in Eq(44) accounts for the near interactions t (R)=Y*(k)e K Tin, )
between scatterers in neighboring cells which will be de- Mq-1 N

noted byS,..(j). The functionumr(R) is the outgoing mul- :Y*(R)ei<k~f1xmq)ei(k~rxqumq )
' -
tipole expansion for celin/. The integrals are the diagonal . N
. - =e KNt (K) (51)
forms of the translation operators. Thus the second sum in Mq"Mg-1"tmg

Eq. (44) takes into account the effects of all the scatterers inyhjch for the sample values becomes

the interaction list of the celing in level Q, which contains

thejth scatterer. The effects of the cells that are further away et Ly : Kq R

are given by similar expressions in lower levels which are  tm,_,(Kq/ )=e'tnr M nzl Wirntm (kp), — (52)
represented by the remaining terms in &) -

We define where the values cttanl at the required sampling points are
obtained by interpolation of the samplestgg. Now, a sum
Umq(ﬁ): > EN,X(q):%m xmr(R)Umq(R), (47 in Eq.(48) can be written as
mée/'mq 9 a

Lo
q-1 k! g1
and write Eq.(44) as ﬁ_" Wnt t’”q-l( n’' )v”‘q—x( w )

n' =

xi=8, gj)+f}€t (K)o (k)dk Kt [ g1 d .
° mQ Mo = WZ/ ! e’(kzl .r)‘mq)\mq—l)il Wn'ntmq(k;l)
n!___l n=
+ fﬁth_l(k)va_l(k)dk+m -
XU _ (Ky )

Ko
=Shea 1)+ 2, Wt (kv (k3)

+ 2 W g (K Do (k2T (48)
n'=1 K,—1 wq 1 . .

where the integrals are replaced by a quadrature ruleknd X{ —"TW,,',,v,,,q_l(kZ,_l)e‘(kn' "xqumq_l)] .
and wj for n=1,...,K% denote the sampling points and v
weights at theK,=2Nj(q) points used for integration at -
level g, respectively. The quadrature rule described previ- o (K3)
ously in Eq.(38) is an appropriate choice. The v, andt
functions must be calculated at the sample points. (53

In the upward pass, the functions, which represent the This result transforms an integral at lewet 1 to an integral
outgoing multipole expansion for the cells, are calculated aat level q, which is achieved by interpolating the kernel of
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the integral operatot, at a lower level, then exchanging the Cl’jp(Q)Nm\l Kq

order of interpolation and integration. As a result, the adjoint _

of the interpolation operator operates on thiunction. This ~ operations, wherg. is the average value of harmonics re-
method was first proposed by Brafftifor solving integral  quired for the scatterers, as defined previously.

equations with oscillatory kernels, who also coined the term  (2) Use Eq.(50) to find the outgoing wave expansions
anterpolationstanding foradjoint interpolation Later, this ~ for each level up to the second levélThis step requires
technique was employed by Song and CH&n the calcu-

lation of electromagnetic scattering from three dimensional ~ C{y(d)~8(Kq+PKg)M,

scatterers. Through the use of this technique, it is possible teperations to generate the desired functions for leyel

carry the multipole expansions without actually evaluatingwherqu is the number of non-empty cells in this level, and
the integrals down to the lowest level where the integrations is the number of points used in interpolation.

is finally performed with the least cost.
Several points remain to be clarified in the foregoing
description. 2. Downward pass

i) The functionay (q)- k) is given by a summa- . -
® aN“(q)'Aqumé( )isg y (1) Starting from the second level, calculatg, (k7)) for
tion truncated aN(q). Since each cell in a given level is a ;

) ) ) each cell using Eq47). This accounts for the multipole
cube of edged,, and we desire the expressions to be valid

- . - ~ Aq .
inside this cube, the largest order of harmonics that should be faxpansmns of interaction cells: Adq“q(k”) as defined
retained is in Eq. (53), where the celm,_, is the parent of the cell

m,. Thus, the multipole expansions of all cells except
for the neighbors are translated to the cell center. The
effect of the neighbors of the cell are left to a lower
level. These calculations are repeated down to the lowest
level and require

N,(q) =|kDg+ Cqlog(kDg+ )|+ 1, (54)

where D < ﬁdq+amax is the diameter of the sphere cir-
cumscribing all the scatterers in cells. The number of the
quadrature points for accurate integration will then be Cliowd @)~ (1 Kq+ Kq+ PKM,

Ng(d)=Ng(q)+1. (55) operations for levet], wherel , is the average number of
interacting cells of a cell.
(i) The choice ofN,(q) determines the neighboring (2) At the lowest level, evaluate
cells. If the distance between the centers of two cells satisfy

" _ Ko R R .
the condition X = Sneal 1)+ 2 Wit (R {0 (K + T g (kD))
N () =K[ry I, (56) whereS,.4(j) is calculated directly. This step requires
mq mq

’ 2

then these cells are neighbors of each other. Caour( Q) 1KN+ 17BN,

(iii) The samples of the functions at a higher level are  whereB is the average number of scatterers remaining in
expressed in terms of a lower level through interpolation. If  the neighboring region of a scatterer.
all K, points available at leved are used to interpolate the
function atK,_, points of levelg—1, the interpolation
would be exact since a spherical harmonic of ordefq)
can be exactly recovered froi, points. However, the al- (1) The interpolation matrices for each level are calculated
gorithm order cannot be reduced. In order to reduce the al- and stored:;
gorithm order we must use R<K, point interpolation for- () The functions @y (@A A (k) are calculated at the
mula whereP is the same for each level. It can be shown that o Mg m
the best interpolation formula for band-limited functions
(hence for spherical harmonjcdrom a finite and non-
uniformly spaced points is the Lagrangian interpolatibn. 3

(iv) If a Q level algorithm is used, there will be a total of
(89°—1)/7 cells which can be a very large number. However, g _ak  .4Q-aK
by retaining only the non-empty cells, CPU requirements can a art Q
be reduced. since the cell size is halved at each level;

The algorithm can now be described as follows: (4) The scatterers are uniformly distributed so that all the

cells are occupied at each level which gives

In order to calculate the overall algorithm order we will
make certain assumptions:

quadrature points for all possible pairs of interacting
cells for all levels;

The number of quadrature points is roughly proportional
to the cell sizes as depicted by E§4) so that

M,=8% and N=8%
1. Upward pass i ) i
(5) The average number of interacting cells for a given level

(1) At the lowest levelQ, for each cell calculate is quite small for the first few levels, but then becomes
U (k‘n?) using Eq.(45). This step requires large and independent of the level, determined solely by
Q
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the desired accuracy. Thus we will denote the limitingconsists of the adjacent groups due to the constraint on the
value ofl, asq increases by. addition theorem.

If we assume that each group contaifi€l) scatterers,
the aggregation, disaggregation, and near interactions steps
can be performed in?(u°N) operations while the group

L Q-1 interactions require”( .°NlogN) operations.
Cup~ KN+ qu 8(Kq+ PKy My

We can now write the total number of operations for the
upward pass as

=m(QN+8(P+1)KQN (57) VIIl. THE FMMFFT METHOD

and the total number of operations for the downward pass as | he idea of diagonalization of the translation operator
can be employed in conjunction with the FFT method to

o o Q reduce the computational lodd.In the FMM, the scalar
Coowr~ KN+ 12BN+ X, (IKg+Kgq+PKgM, functionsu(k) are the outgoing wave expansions for each
a=3 group. For far away groups, these outgoing wave expansions
= KN+ u2BN+2(1 + P+ 1)K oN (58  are translated to a standing wave expansion by

from which it follows that the overall algorithm complexity . - A
is of #(N). The multiplicative factor of the algorithm de- ~ v(k)= 2 an, an(K)u(k).
. /¢,// Vi
pends basically on the value of the average number of _ o _ S
interacting cells. This value in turn depends on the desired his equation is a matrix-vector multiplication. If the group
accuracy. centers are located on a regular grid, the matrix whose en-
tries areay .\, (k) is a Toeplitz matrix and the multiplica-

tion can be done efficiently by using the FFT algorithm. In
this approach, all the operations in a multilevel FMM, except
The translation matrix ;(k’rji) depends On|y on for the IOWeSt-IeVel, are replaced by the FFT algorithm.
r;j=r;—r; and hence the summation in E49) can be con- The algorithm can be summarized as follows: .
sidered as a convolution, which can be effectively evaluated 1. Aggregation.For each group form the scalar function
using the FFT algorithm. However, to use the FFT algo-U defined as
rithm, the scatterers must be located on a regular grid.
The basic tool for the FFT method is the addition theo- oy K-Vt B i
rem depicted in Eq(28) which is repeated here for conve- utk) i;:;, © Yik)-b
nience:

VII. THE FFT METHOD

at the ZN?, quadrature points. For any given distribution of
the scatterers, the number of FFT poitig-7, can be cho-

a(k,rji)=BK.rj) - a(k,rn) - k). (59 sen to keepN, same. This meansl~N2g;. This step re-
This expression is valid ifr,.,|>|ry+1,, i.e., if the two  quires”(N) operations.
groups are disjoint. Using E@28) in Eq. (33) and rearrang- 2. Group interactions. For each group evaluate the sca-
ing, we get lar functionv given by the sum
=T > > akr)-b v(k)= > ay ankuk)
e iel, e o «
i#]

at the ZN(Z, guadrature points by using the FFT algorithm.

_ _ A Assuming that each group contaim$(1) scatterers, and
+ﬂ(k’rik’)'/ E/ a(k*rh’k)'.z,, Bk,ryi)- b hence,u_~2N2, this step requiresﬁ‘(m\llogN) operations.

o 3. DisaggregationFor each scatterer, evalu&g,(j) as

=T Bk,rjs)- & (60)

The inner summation of the second term aggregates the out- Srar(j)ZT_j~ % ek rivy* (kv (k)dk

going multipole expansions of the scatterers contained in a

group to the center of that group. The outer summation acusing the N% guadrature points. This step is similar to the

counts for the group interactions. If the computational do-aggregation step and requiré€N) operations.
main is divided into regular boxes, the translation between 4. Near interactions. Compute the near interactions di-

groups can be performed by using the FFT algoritfisince  rectly as described by the first sum in E&3). This step

in th.is.cas_e the outler sum can be qast intq a mat_rix_—vectqrequires@(ﬂzN) operations.

multiplication involving a block Toeplitz matrix. Multiplica-

tion of the outer sum bﬁk’rix') accounts for disaggrega- The order of the_algorithm is determined by the second
tion and the first sum represents the near interactions whicktep and hence i¥(uNIlogN). The basic advantage of using
should be calculated directly. The set of neighbors of a grouphe diagonal forms of the translation operators is that the
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FIG. 2. Convergence rates for different iteration algorithms.
FIG. 1. The far field functiorf..(6,=0) for a sphere cka=4.0,¢c,=1.2,
p1=1, in a background medium with parameters1, p=1. The analytic

solution is obtained by spherical harmonic series expansion, while MLFMA. .
and FMMFFT results are obtained by dividing the sphere into 3071 smaIIThe errors in both the MLFMA and the FMMFFT results are
spheres with the same parameters. less than 10% of the analytical result.

To solve the matrix equation, the conjugate gradient nor-

algorithm order is reduced by a factor E However, the malized i resjdual (CGN_R)’ conj.u.gate. gradient squgred
near neighbors are determined by the condifiop<kr,,, ~ (CCG9, biconjugate gradient stabiliz¢8iCG-STAB), quasi-
which results in a larger number of neighboring groups adninimal residualQMR), and Neumann iteration techniques
compared to the FFT method. As a result, the total number o€ Used. lteration is stopped when the norm of the residuals
operations per matrix-vector multiplication for the FMMFFT drop below 10° of the norm of the right hand sidexcita-
method can exceed that of the FFT method, especially wheton vectod of the matrix equation. The ratio of the norm of

the scatterers are densely packed. the residuals to the norm of the excitation vector for these
methods is shown in Fig. 2. The results show that the CGS,
IX. NUMERICAL RESULTS BiCG-STAB, QMR algorithms have similar convergence be-

havior and they converge much more rapidly than the CGNR

In order to test the algorithms, a large sphere is divided,gorithm. This is basically due to the fact that CGNR

into smaller spheres and the field scattered from this systemathod is applied to the positive definite Hermitian matrix
of particles is calculated. Figure 1 shows the far field func-AT A whose condition number is the square of the oridinal
tion for this sphere obtained by using both the analytic re- . 9

sults (solid line, which are obtained by spherical harmonicCO€fficient matrixA. However, the CGNR method is quite
series expansion and the results obtained by using the general and can be applied to any matrix whereas the con-
MLFMA (*O”) and the FMMFFT (“x”) algorithms, Vergence of the others depend on the properties of the ma-

where the far field functiori..(6, #) is defined by trix. The Neumann series converges exponentially and its
convergence rate is intermediate for this example.

eikr It must be mentioned that the rate of convergence of the

DA ~fou(0,4)——,  kr—es, (61)  algorithm depends on the distribution of the scatterers as

well as their contrast. When the contrast is increased, the
and®*(r) denotes the scattered field. The large sphere has @mber of iterations required also increase. When the density
radiuska = 4.0 and it is divided into 3071 smaller spheres of the scatterers is different from that of the background
each having a radiusr=0.1376. The density of the spheres megium, it becomes necessary to use more terms in the ex-
are the same as the background medium and the velocity @fansion of the fields scattered by them, especially when the
sound in the spheres is 1.2 times that of the background. Th&aterers are small. This is because the dipole terms cannot

spherical harmpnic expansion for the field scattered by th%e ignored for such scatterers as compared to the monopole
small spheres is truncated af=2, hence there are 9 un- term. Due to the increase in the number of iterations, the

knowns associated with each sphere, giving a total of 27 63 otal time to solve high contrast problems takes much more

unknowns. The radii of the s_mall spheres are calculat_ed SUGme. Such cases have been successfully solved for a low
that the total volume occupied by the 3071 spheres is equal

to that of the large sphere, i.e flumber of unknowns.
g€ sp T In the implementation of the algorithms, the translation

coefficients for neighboring scatterers are calculated each
— —0.1376. time it is required instead of keeping them in the memory.
307173 This decreases the memory requirements at the cost of in-

ka
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FIG. 3. The CPU times for the MLFMA and FMMFFT methods for a FIG. 4. The CPU times for the MLFMA and FMMFFT methods for closely

random distribution of scatterers. The numbers belalaove the curve for packed scatterers located on a uniform rectangular grid. The numbers below

the MLFMA (FMMFFT) show the optimum number of leve{EFT size. (above the curve for the MLFMA(item) show the optimum number of
levels (FFT sizg.

creasing the computation time for near interactions, but doegdaptive nature of the MLFMA, the CPU requirements at the
not change the complexity of the algorithm. optimum number of levels are less stringent.

The efficiency of the fast matrix-vector multiplication Figure 4 is similar to Fig. 3, except that the scatterers are
algorithms is tested by using different number of scattererdocated on a uniform rectangular grid and they are in contact
As the number of the scatterers is increased, the comput¥ith each other. The whole cluster forms a cube whith
tional domain is also enlarged to keep the density of scattericatterers on each side. Whish=2", the scatterers are lo-
ers approximately constant #D3/N~18 whereD is the cated at the center of a cell fon levels (FFT size=2M).

edge of the cube that encloses all the scatterers. The aCOLESQr such cases, the matrix-vector multiplication times for
tical parameters of all the scatterers are same with. and oth algorithms are very close to each other. These cases

c=1.2, whereas the location and the radii of the scatterergls0 pr.esent ideal sitL_Jations in.the sense that the as;ur_‘nptions
are randomly generated. The electrical radii of the scattererg,1 ade in the complexny analysis are very closely §at|sf|ed.. It
kr, are uniformly distributed between 0 and 1.75. Figure 3can be seen from the' figure that the slope of theillne passing
hows the CPU time per matrix-vector multiplication for thethrough these pomt_s is very close to unity. Widris not a
i/ILFMA and FMMFFT methods. All the results presented power of 2, there is an offset between the cente_rs of the
are obtained on a 90 MHz, SGI Power Challenge with 2 GBscatterers and the centers of the cells, for any choice of the
of RAM. The numbers belowaboveg the curve for the
MLFMA (FMMFFT) show the optimum number of levels G
(FFT size. It must be noted that the FFT algorithm used is a o ? ? ? ? ?
radix-2 algorithm, hence the FFT sizes are powers of 2. Ir
the MLFMA, the accuracy parameter is chosen to be
C,=1.0 andP=16 point interpolation is used. The results , : ; ; ; ; : : ;
confirm the Complexity analysis for these algorith%s. 10k ....... ...... A 4 o
Figure 3 reveals that the time per iteration is larger for Y et : : : :
the FMMFFT as compared to that of the MLFMA. As the ' 5 ;
number of levels used in MLFMAor the FFT size in the
FMMFFT) is increased, the cell size at the finest level de- 10
creases until it becomes about the size of the largest sce
terer. However, due to random distribution of the scatterers
most of the cells at this level will be empty. The size of the
cells at the finest level determines the neighboring cells 1 ; ; ; i ; ; ; ;
thfrcl)UQT E((I:]:T:(_|5_4) _agd (56).dTherefore,hincreasing thf nun;ber ° azr?gle (d:g.) meg(s)ured :'gm thgzod?rec(iz)ioof inéit%m fil?do %0
of levels sizg can decrease the amount of work re-
quired for evaluating the near interactions drastically. In the

: ; FIG. 5. The far field functiorf..(6,$»=0) for a sphere oka=8.0,c,=1.2,
MLFMA empty cells do not contribute to the computation, p1—1.in a background medium with parameters 1, p— 1. The MLEMA

whereas in the_ FMMFFT algorithm empty cells require asiesyits are obtained by dividing the sphere into 137,376 small spheres with
much computation as the non-empty cells. As a result of theéne same parameters and usidg=0.0.

[foo (D =0)!
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P=16 along with the spherical harmonic series expansion
! ! solution. The acoustical parameters are the same as in the
1L ...... ......... S ....... ‘ previous case. The total solution time~4<20 hours.

—Anayic
% MLFMA i ; ; : X. CONCLUSIONS

The MLFMA and FMMFFT algorithms are imple-
mented to solve the multiple scattering from a cluster of
scatterers. The complexity analysis for both algorithms are
given and verified by simulation. It was observed that the
MLFMA performs better than the FMMFFT algorithm in
general. However, when the scatterers are distributed uni-
formly on a rectangular grid, the FMMFFT algorithm is as

: : : ; : : - : good as the MLFMA. Since the implementation of the
0 20 40 60 80 100 120 140 160 180 FMMFFT algorithm is much easier, it should be preferred in
angle (deg.) measured from the direction of incident field such cases. On the other hand, if the scatterer distribution is
far from uniform, MLFMA can save both CPU time and
memory owing to its adaptive nature.

FIG. 6. The far field functionf..(6,¢=0) for a sphere ofka=16.0,

c,=1.2,p,=1, in a background medium with parameters1, p=1. The ) The FMM is based on an ap'proximation of the trans'?'
MLFMA results are obtained by dividing the sphere into 1 099 136 smalltion coefficients for far away points. The accuracy of this
spheres with the same parameters and uSigg0.0. method is controlled by the parameey. It is stated in Ref.

8 that for single precision(32-bit real3 C,=5, and for

number of levels. However, this offset can be made smalleflouble precision(64-bit realy C,=10 are appropriate. In
by using a large number of levels at the expense of creatinffef. 36, Co,=1 is used. The numerical results presented
many empty cells. ThUS, for the same reason exp|aineabove show that, at least for SUfﬁCiently smooth prOblemS,
above, MLFMA performs better than the FMMFFT algo- €ven a smaller value &, gives accurate results.
rithm for such cases.
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The parabolic equation technique is used to solve the Helmholtz equation in the presence of
scatterers of arbitrary shape, in two and three dimensions. The scattered field is computed directly,
using non-homogeneous boundary conditions on the scattering object to represent the incident field.
Effectively this decouples the PE paraxial direction from the direction of incidence. For convex
objects the whole range of scattering angles can be covered with a small number of narrow-angle
calculations. Finite-difference implementations involve tridiagonal matrices in two dimensions and
more general sparse matrices in three dimensions. The resulting codes can be used to solve
scattering problems for objects ranging in size from a few wavelengths to hundreds of wavelengths.
The method has been tested against analytical solutions for soft and rigid circular cylinders in 2D
and soft and rigid spheres in 3D, showing good agreement at all scattering anglek0989
Acoustical Society of AmericBS0001-496608)03202-0

PACS numbers: 43.20.Fn, 43.30.GANN ]

INTRODUCTION gular sector. With a small number of runs, scattering angles
over the whole 360-deg domain can be covered.
Parabolic equatiolPE) techniques have been widely In this paper we focus on the scattering calculations,

used to solve various types of wave propagation problemsimiting ourselves to the case of a homogeneous background
They provide an efficient solution for long-range propagationmedium. Scattering objects are assumed to be non-penetrable
of acoustical waves in the ocean or electromagnetic waves ito sound. The PE algorithm is only used outside the scatter-
the atmospher:* More recently interest has arisen in the ers, which are represented by appropriate boundary condi-
use of PE methods to solve scattering problems. Fast anibns. Far-field results are obtained from the near-field calcu-
accurate calculation of target strength is of course of gredations through Fourier transform technigues.

practical interest for defense applications. One approach is to

couple the parabolic equation method with a scattering pMaATHEMATICAL ERAMEWORK

model to study target scattering in the océadfiowever the

PE can also be used to compute the scattered field [n all that follows, we assume exp(wt) time depen-
directly -8 We show that complex three-dimensional acous-dence of the fields. We write the total fiefg] as the sum of

tic scattering calculations can be carried out efficiently withthe incident fieldy; that would be present without the scat-
appropriate PE techniques. We believe that the resulting afering object of interest and of the scattered figid Using
gorithms bridge a gap between asymptotic methods, whicfrartesian coordinatesxy,z), we introduce the reduced
can be difficult to apply in the low frequency regime, and functionu related to the scattered field,

finite-element codes, which can require huge computing re-  y(x,y,z)=exp( —ikx) (X,Y,2), (1)
sources for large targets. ) . .

In related previous work® the PE was used to solve for Wherek is a reference wave number. Choosing the positive
the total field. For forward scatter this method is identical to2X!S @s the paraxial direction, we obtain the outgoing para-
the conventional PE, while for computing the back-Polic wave equation
propagating field, it treats the scattering object as a sequence gy
of reflecting facets. This approach gave quite encouraging 7> Tik(1=Q)u=0, 2
results, but the method only coped approximately with the
backscattered field and the field scattered at large angles. Where the pseudo-differential opera@ris defined by

the work presented here, rather than solving for the total 1 2 1 2
field, we solve for the scattered field, incorporating informa- Q= 2 WZ + 2 972 +n?(x,y,z) (©)]

tion on the incident field through the use of non-homogenous

boundary conditions on the object surface. With this ap-andn is the refractive index of the medium. In this paper we

proach the PE paraxial direction is independent of the direcinvestigate the idea of rotating the paraxial axis to cover the
tion of the incident wave. As a consequence, the paraxialvhole angular range of interest with a small number of PE
direction can be rotated to compute the field in a given anfuns. The narrow-angle PE, obtained by using the first-order
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s s s _ i
nxa—X(P)+nyW(P)+nZE(P)— - &_n(P)’ (7)
whereP is a point on the surface amd=(n,,ny,n,) is the
outer normal to the surface Bt Using Eq.(1) and eliminat-

ing the range derivative using the parabolic equat®nwe

get
in, &2u+&2u ik +au +¢9u
— | ==+ —| +ikn —ny+—n
2k \gy? = 9z U ay vV gz *
I
=—exp(—ikx) —. 8
p(—ikx) —- ®
FIG. 1. Computational domain, showing PML layer. More general boundary conditions of surface impedance type

can be expressed in a similar way.

The computational domain must be truncated in the
transverse plane. Many types of absorbing boundary condi-
tions have been considered in the literattfélere we use
the Beenger perfectly matched layéPML) techniquetlt?

Taylor approximation of the root, provides the simplest

framework for this. It has the well-known expression
g i (e P ik
(ﬁ_x_ 2k ((9_y2+ 972 + E(n _1)]U_0- (4) A PML medium has the property that outgoing waves are
fully transmitted at the interface without generating any re-

We shall see that the resulting scattering algorithms treafections. The technique was originally designed to solve
convex objects very accurately. For more general shapes ffiaxwell’s equations, but it can be adapted for the parabolic
will probably be necessary to resort to wider angle approxiequation framework® The great advantage of the PML is its
mations, in particular investigating the use of the split-stepsfficiency at all incidence angles, with a perfectly matched
Pademethod" layer typically using a few gridpoints only.

In what follows, we assume a homogeneous background " e use a rectangular box-shaped domain containing the
medium, takingn constant equal to 1. This simplifies the gcatterer as shown in Fig. 1. The initial solution has to be
treatment of boundary conditions and of far-field calcula-gefined at the plang=0 in order to start the marching al-
tions. It is likely that the latter problem can be treated inggorithm. Since we are solving for the scattered field in a
more general environments by coupling the scattering modedaraxial cone centered on the positivelirection and all the

toa I(_)ng-range PE code. ) scattering sources are located in the half-spae®, the ini-
Since we solve for the scattered field, the boundary contig| PE scattered field is zero.

ditions on the object are not homogeneous, as they involve  Thjs seemingly surprising initial condition is due to the
the incident field. An acoustically soft object is modeled byfact that the PE extracts energy propagating in the paraxial
the Dirichlet boundary condition: for a poifton the bound-  cone: the PE initial scattered field is not the actual physical
ary of the object the total field is zero, giving the relation scattered fieldwhich is of course not zero in front of the
bereen the scattered fieyd and the incident field); in that objec, but only that part of it which is propagating in the
point: paraxial direction(i.e., toward the objegt Now since the
W(P)=— s (P). (5) object is the source of the scattered field, the scattered field
propagates away from the object. This implies that atxthe
Combining Eqgs(1) and (5), we get the boundary condition =0 plane, no component of the scattered field propagates in
for the reduced function: the paraxial cone towards the positive direction oftheis,
U(P) = —exp( — ikx) i (P). 6) and hence the initial PE scattered field is zero.

Acoustically rigid objects are modeled by the Neumann; NUMERICAL IMPLEMENTATION

boundary condition, which can be written as

We use a finite-difference implementation on a rectan-
gular grid, together with a simple staircase representation of
the object boundary. The grid spacing is fixed in the trans-
i verse (/-z) plane, but with variable range step for accurate

R4 representation of the scattering object. An important consid-
Wy | 7 eration is that for plane wave incidence, the boundary con-
T ditions[Eqgs.(6) and(8)] contain an exponential term inon
i ) the right hand side. This implies that the grid spacing must
“i Wi be reduced as the angle between the paraxial and incident
directions increases, in order to represent phase variations
accurately. Typical range steps are 1/10th of a wavelength or
FIG. 2. Position of the grid points used by fully implicit solve) and the less. This is of course in total contrast with the more usual

structure of the sparse matrix for the Dirichlet calse long-range applications of the PE, where range steps can be

a) b)
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FIG. 3. Double pass method for Neumann boundary condition. 10
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very large compared to the wavelength. For most applica-

tions the target dimensions are less than a few hundred wavELC: 5. Target strength for a soft cylinder of 5 wavelengths radius. The

lenaths. and the small range steps are not a pbroblem _par_aX|aI direction h_as _angle qa) and 9Q°(b) with tr_\e d|rect|pn of thg
gths, . 9 p . p * . incident wave. Solid line—PE; dotted line—analytical solution. Vertical
The Crank—Nicolson scheme is often used for finite-jines show=15° sector around the paraxial direction.

difference implementations of the PE. Here we use a slightly

different implicit scheme, which has better stability proper- ) ) _
ties than the Crank—Nicolson schetheand is easier to forward range only, instead of averaging between previous

implement with irregular object boundaries. Basically, the@nd forward range as in the Crank—Nicolson scheme. One

second order derivatives inandz are approximated at the disadvantage is that this scheme is first-order accurate in
range whereas the Crank—Nicolson scheme is second-order

accurate, implying that smaller range steps are necessary.
z, metres This is not a major drawback for the type of problem treated
here, as range steps tend to be small anyway for accurate
object boundary modeling and good phase representation.
For the standard PE, the scheme is described by

104

. u.nfrl— THe

1) L 1 1 1 1
1 R 2kA22(u?j1~j+unj+’l_4unj+ +ulty
0.9
07 + uin,?—-&l)' 9

s wheredx is the range step size ad is the grid spacing in

0.3 the transverse plangdor simplicity the same grid spacing is
01 used here for thg andz coordinates The superscript index

relates to grid points along the range axisthe subscript
indexes andj refer to the grid points along theandz axes
[Fig. 2@]. Boundary conditions on the object are approxi-
mated by single-sided finite-difference expressions.
In two dimensions, each range step requires the inver-
-10 sion of a tridiagonal matrix which can be carried out effi-
0 5 10 ciently with the usual Gauss pivot method. In three dimen-
X, metres sions, the tridiagonal matrix is replaced by a sparse matrix
with a more complicated structure, as shown in Figp) 2or
FIG. 4. Amplitude of the scattered field for a soft cylinder illuminated by a the Dirichlet case: if the points in the transverse plane are
plane wave of unit amplitude coming from the left. Cylinder radius is 5 ’ . . .
wavelengths. PE paraxial direction corresponds to the direction of the incihumbered row bY_ row, the matrix has three dlagon_a!s In _the
dent wave. center and two diagonals further away. A very efficient in-
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FIG. 7. Target strength for a rigid cylinder of 5 wavelengths radius. Solid
line—combined rotated PE runs; dotted line—analytical solution.

180°

FIG. 6. Target strength for a soft cylinder of 5 wavelengths radius. Solid

line—combined rotated PE runs; dotted line—analytical solution. . . . . .
Y maximum diameter of the scattering object in the transverse

plane in order to obtain meaningful far-field patterns in the

version technique is available for this case, based on factor= 15° 0 15° sector around the paraxial direction.

ing of the 3D operator into 2D operators for tiyeand z The results of a single PE run are valid in a cone of

coordinate<® roughly —15° to 15° around the paraxial direction, which
This is not possible for the Neumann boundary condi-can be chosen arbitrarily. For computing backscatter for ex-

tion [Eq. (8)], which is non-separable in general: the partial@mple, one would take the paraxial direction as the opposite

derivatives a|0ng the transverse coordinates are Coup|ed, % the incident wave direction. To obtain the whole bistatic

that further non-zero entries are present and a sparse mati§eattering pattern, a dozen runs would be required.

solver is required. We have used a bi-conjugate gradient

method with Jacobi precondition&t.Calculation times for

the Neumann case can be reduced by decomposing the trans-

verse domain into two regions, a small region B enclosing

the object, and region A. In a first pass, the field at the next!l- FAR-FIELD FORMULAE

range is calculated in the whole transverse domain assuming

the object is not present at that range. The PML is used to Many problems require the calculation of target

truncate the field at the outer boundaries of region A. Thestrength, which is a far-field notion. For a homogeneous

resulting field values are kept for region A. For region B, thePackground medium, target strength can be derived from

field is then recalculated with the sparse matrix solver, thig1ear-field computations by solving the PE in closed form. In

time in the presence of the object, using the first pass result¥vo dimensions, this involves a Hankel convolution ker7nel,

at the boundary of region B. The method is described schewith the formula:

matically in Fig. 3. Thinking in terms of the Huygens prin-

ciple, we choose region A in such a way that the influence of

the object between rangesand x+Ax on pointM at the ik w0

boundary between regions A and B is negligible, as it corre-  ¢¢(x,z)= Ee*'k(xfxo)f Ws(Xg,2")

sponds to deep shadow diffraction. The choice of region A is o

of course dependent on the range step. This double pass tech- X

nique provides considerable speed-up for the Neumann case, X

but integration times are still several times longer than for

the Dirichlet case which does not involve sparse matrix in-

versions. As calculations in region A are very fast, it is not

necessary to use sophisticated procedures to optimize itghere xo<<x are any ranges beyond the objebtfll) is

size. Typically region A is taken to be two to three times thethe Hankel function of the first kind andp(z’)

~ %o
p(z")

HM (kp(2'))dZ', (10)
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FIG. 8. Target strength of a soft sphere of 5 wavelengths radius. Solid

line—PE; dotted line—analytical solution.

=(x—Xg)?+ (z—2')?. The corresponding formula in three

dimensions is

1 (= . (X=Xo)
lﬂs(xyyiz):_z f_mJ’ lpS(XO’y/’Z,)‘ Ikwlor)
3 1 exp(ikd(y’,z’))d ' de!
dy’.z)| ~ diy.z) Y %
(11

where d(y’,z')=(xo—x')?+(y—y')?+(z—2')".
tion (6,¢) is given by
TS(6,¢)=10 lod lim r?[¢s(x,y,2)[/[¢5(x,y,2)|?]

r—o

wherex=r cos6, y=r sin#cose, z=r sinfsine. If the
incident fieldy; is a plane wave with unit amplitude, target

strength in direction(6,¢) is given by

k? co< 0
47°

J,:fi‘//s(xo,y’,z')

Xexp(—ik sin 8(y’ cose

TS(6,0)=10 |O%

X

2
+2' sing))dy’'dz
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By
definition, the target strengthin three dimensions in direc-

12

13

FIG. 9. Target strength for a rigid sphere of 5 wavelengths radius. Solid
line—PE; dotted line—analytical solution.

The corresponding formula in two dimensions is

kcog 0| (= ,
TS(6)=10lo T f_m(ﬁs(XO,Z)

2

X exp(—ikz’ sin §)dz’ (14)

These expressions show that target strength is obtained as the
Fourier transform of the field in any transverse plane located
beyond the object. Fast Fourier transforms can of course be
used for the numerical calculations. However for the very
small integration domains used here, it is more economical
to compute the integrals directly with a standard Simpson
scheme, thus avoiding sampling constraints in angle space.

IV. RESULTS AND DISCUSSION

We have compared PE results to analytical solutions for
canonical shapes, using circular cylinders and spheres. In the
examples below, the sound speed is 1500 m/c and the source
frequency 1500 Hz, corresponding to a wavelength of 1 m.

We first look at two-dimensional examples. Figure 4
shows the amplitude of the scattered field computed with the
PE for a soft circular cylinder of 5 wavelengths radius illu-
minated by a plane wave of unit amplitude coming from the
left. The PE paraxial direction corresponds to the direction of
the incident wave. As soon as the solution has been marched
beyond the cylindefi.e., for ranges more than 10 m in this
case¢ we can use Eq(14) to compute the far-field target
strength. The result is shown in Fig(aéh The analytical
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09 b) FIG. 12. Scattering by an L-shaped object. Narrow angle PE rotated by
0f o7 20°—solid line; wide angle PE—dotted line.
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0.5
-20 03 . H H o o 1
] paraxial direction was 0°,30°,...,180dsing the relevant PE
=0 - results in each angular sector. Agreement with the analytical
-40 results is excellent.
] The calculations were repeated for the acoustically rigid
-0 0 10 20 30 x4r?1etrgg 60 70 80 90 case. Figure 7 shows the full target strength results using the

same angular patches as before. For both the soft and rigid
FIG. 10. Amplitude of the scattered field in a vertical plane for a rigid cases, the grid spacing was 40 points per wavelength in all
submarine-shaped 3D object illuminated by a plane wave of unit amplitudegordinates, the transverse domain size was 40 wavelengths
coming from the left. The field has been computed with forw@dand 54 the execution time for each PE run was less than 15 s on
backward(b) PE runs. . . .

a Pentium 133 MHz PC. As expected in view of the more

) L . ) complex integration scheme, accuracy is slightly less good in
solution[dotted curve in Fig. &)] is computed from a series the rigid cylinder case.

of co;ine fungtioné‘ﬁ3 As expected, t.he standard parabolic Figures 8 and 9 show target strength results for soft and
equation provides accurate results in a sector of about 1544 spheres of radius 5 wavelengths, computed with the PE
from the paraxial directioimarked with a vertical line i athod and from the analytical solution, which is written as
Fig. 5@], but the PE target strength field drops off much 5 series of Legendre functiofsThe grid spacing used for
fe}ster. than j[he analytical solution away from the paraxiak,o pg simulations was 20 points per wavelength and the
direction. Figure &) shows target strength when the onqyerse domain size was 30 by 30 wavelengths. Execution
paraxial direction makes an angle of 90° with the direction of;; a5 were 10 minutes for the soft case and 30 minutes for
the incident wave. Again results are accurate within 15° fromy, o rigid case on a Pentium PC. The longer execution time
the paraxial direction. Figure 6 shows target strength calcur,, ihe rigid sphere is due to the use of the sparse matrix
lated with the PE and with the analytical solution for the gqyer for modeling the Neumann boundary condition. As in
whole angular range. The PE curve was combined from 7 Ply,e op case, results are in excellent agreement for the soft
runs in angular patches rotated by 308., the angle of the ~ gonere. The error is larger for the rigid sphere, but remains
within 1 dB except in nulls of the scattering pattern.
z Paraxial direction To show that the method can be used for complex ob-
of the rotated PE jects, we compute the acoustic field scattered by an acousti-
cally rigid idealized 3D submarine shape. The object is quite
large compared to the wavelengtimaximum dimension of
100 m, whilex=1 m). The incident field is a plane wave
coming from the left. Figure 10 shows the scattered field in a
longitudinal vertical plane passing through the axis of sym-

FIG. 11. Scattering by an L-shaped object. Height—3 wavelengths/Netry of the object. Figure 18 was obtained by marching
length—10 wavelengths. the PE algorithm in the direction of the incident waifer-

740  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998 M. F. Levy and A. A. Zaporozhets: Scattering calculations with the PE 740



ward scatter, and Fig. 10b) shows the field when the PE is ACKNOWLEDGMENTS

marched in the opposite directiofibackscatter The grid

spacing was 10 points per wavelength and the transverse This work has been carried out with the support of the

domain size was 100 by 100 wavelengths. The executiolRadiocommunications Agency of the Department of Trade

time for each PE run was about an hour on a Pentium PC.and Industry and of the Engineering and Physical Sciences

At the beginning of this paper, we stated that the rotatingResearch Council of the United Kingdom.
narrow-angle PE has limitations: This is due to the fact that
energy scattered by one part of the object in a given direction
may well contribute to scatter from another part of the object
in a completely different direction. This is certainly the case
for non-convex objects like the L-shaped object shown in ID. Lee and S. T. McDaniel, “Ocean acoustic propagation by finite differ-

. . . ence methods,” Comput. Math. Apfl4, 305-423(1987).
Fig. ]:1- |_f the_ na_-rqu'angle rOtateq PE is used with the2p | ee and A. Pierce, “Parabolic equation development in recent de-
paraxial direction indicated by the thick arrow, 20° from the cade,” J. Comput. AcousB, 95-173(1995.
horizontal, the contribution of ray 1 will be ignored. This is K. H. Craig and M. F. Levy, “Parabolic equation modeling of the effects
confirmed in the results shown in Fig 12 where the narrow- of multipath and ducting on radar systems,” |IEE Proc. F, Radar Signal

) ' Process138 153-162(1991).

angle rotated PE results are corppared with a reference solux, g. Barrios, “A terrain parabolic equation model for propagation in the
tion obtained with a split-step Padede®® The generaliza- troposphere,” IEEE Trans. Antennas Propag, 90—-98(1994.
tion of such a code to three-dimensional problems is not {V'-_D- _COtltl:nS and '\{[-JF-AWerbty,SA pzrrggoyggegjquiﬂggglgggel for scat-

. . . . . ering In the ocean, . ACoust. >Soc. 3 - .
stralghtforward, partlcularly Concem_mg domain tru_ncatlon 6N. Y. Zhu and F. M. Landstorfer, “Numerical determination of diffrac-
and the treatment of boundary conditions on the object. tion, slope and multiple diffraction coefficients of impedance wedges by

A similar problem arises for the treatment of creeping the method of parabolic equation: Space waves,” IEEE Trans. Antennas
waves: Their excitation by boundary conditions on the scat-,Propag43, 1429-14351995. . . .
terer is automaticallv taken into account by the PE. but the M. F. Levy and P-P. Borsboom, “Radar cross-section computations using

- - X Yy y - ) the parabolic equation method,” Electron. Le82, 1234—12361996.
difficulty is that they can undergo large changes of direction&m. . Levy, P-P. Borshoom, A. A. Zaporozhets, and A. Zebic-Le Hyaric,
along the object. The accuracy with which creeping waves “RCS calculations with the parabolic wave equation” AGARD SPP
are handled by the rotating PE method depends on the size oﬁﬁgng'ig‘gg”Eﬁf;;sﬁmge Analysis and Imaging of Military Targets
the sgattenng object relative to the incident wavelength.sy, o Collins, “A split-step Padesolution for the parabolic equation
Creeping waves can travel all the way around the scatterermethod,” J. Acoust. Soc. An94, 1736—17421993.
and this “second time around” incident field is not taken *°D. Gi\(/oliv j‘;Non-reﬂecting boundary conditions,” J. Comput. Phya,

- . - . 1-29(1991).
]I‘nto z(.:coumfby the rlotatmg :E' The reSU|tInb§|] errorhls Sma““.].-P. Beenger, “A perfectly matched layer for the absorption of electro-

or objects of a size larger than or comparable to the wave- magnetic waves,” J. Comput. Phyk14, 185-200(1994.
length. 12].-p. Beenger, “Perfectly matched layer for the FDTD solution of wave-

It might be possible to extend the method to penetrable itlfgitluggénteracﬂon problems,” IEEE Trans. Antennas Progag110—-
,ObJeCtS l?{g using suitable boundary conditions for Sl,OpI,ng“C. Vassak.) and F. Collino, “Highly efficient absorbing boundary condi-
interfaces,” although accurate handling of resonance inside tions for the beam-propagation method,” J. Lightwave Techrid,

the object would probably require iterative procedures. 1570-1577(1996.

14G. D. Smith,Numerical Solution of Partial Differential Equatior(€lar-
endon, London, 1985

V. CONCLUSIONS 15D, Lee, Y. Saad, and M. H. Schultz, “An efficient method for solving the

The potential of PE techniques for target Scattering cal- three-dimensional wide angle wave equation,”Gomputational Acous-

. . ._fics, Wave Propagatignedited by D. Lee, R. L. Sternberg, and M. H.
cglatlpns has been. de.monstr_ated.. By decc_)upllng the paramalsmultz(Elsevier Science, New York, 1988p. 75—88.
direction from the incident direction, the field can be com-16R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra,
puted at all scattering angles by combining several PE runs.V. Eijkhout, R. Pozo, C. Romine, and H. Van der VofBémplates for the
For a homogeneous background medium. far-field results areSolution of Linear Systems: Building Blocks for Iterative Meth@I&M,

] . ) ! Philadelphia, 1994
Obta{ned with Fourier tranSform_ methOdS-_The narr()_w'angle7R. J. Urick, Principles of Underwater SountMcGraw-Hill, New York,
rotating PE code has been validated against analytical solu-1983, 3rd ed.
tions for canonical shapes, using both Dirichlet and Neuy28J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenggctromagnetic and

mann boundary conditions. For three-dimensional simulag,”c0ustic Scattering by Simple Shaghisrth-Holland, Amsterdam, 1969
. . . . . D. Lee and S. T. McDaniel, “A finite-difference treatment of interface
tions, integration times are of the order of a few minutes for congitions for the parabolic wave equation: The irregular interface,” J.

moderately large objects. Acoust. Soc. Am73, 1441-14471983.

741  J. Acoust. Soc. Am., Vol. 103, No. 2, February 1998 M. F. Levy and A. A. Zaporozhets: Scattering calculations with the PE =~ 741



An iterative solver of the Helmholtz integral equation
for high-frequency acoustic scattering

S. N. Makarov
Faculty of Mathematics and Mechanics, State St. Petersburg University, Bibliotechnaya 2,
St. Petersburg-Petrodvoretz 198904, Russia

M. Ochmann
Technische Fachhochschule Berlin, Fachbereich Mathematik und Physik, Luxemburger Strasse 10,
13353 Berlin, Germany

(Received 15 May 1997; accepted for publication 30 September) 1997

High-frequency scattering from convex and non-convex bodies is studied using an iterative
algorithm. The key point of the method is a self-adjoint formulation of the Helmholtz integral
equation, which ensures the convergence of the iteration process toward the true solution. For all
investigated structures with different surface impedances fast convergence could be observed. The
number of surface elements of the scatterer varies from about 6000 to 60 000 and the calculations
are performed in the high-frequency range with Helmholtz numkatsetween 20 and 63. Even for

a scattering structure with nearly 60 000 boundary elements, all computations could be carried out
on a regular personal computer. £998 Acoustical Society of Ameri¢&0001-4968)01202-§

PACS numbers: 43.20.Fn, 43.30.Ft, 43.30[@GNN]

INTRODUCTION I. THEORY

. . S A. Rigid scatterer
This paper presents an investigation of plane wave scat- _ o _ _
tering from mainly non-convex bodies at high frequencies. ~ The idea of an iterative solution of the Helmholtz inte-
The Helmholtz numberia of the problem range from about 9gral equation based on a symmetric and positive definite for-

20 to 63. The surface of the structure may be characterizegfulation is realized numerically. Among other iterative
by a local surface impedance. methods, a formulation of Kleinman and Ro4cias been

Commonly used methods at high frequencies are ap(_j.eveloped. The following notations are used in the calcula-
proximate solutions like the plane wave approximation, thelons: , ) ) )
Kirchhoff approximation, the Rayleigh integral, or similar Xy two arbitrary spatial points whey_aalwgys Ilgs
approache$® Unfortunately, those approximations fail if ohn the st'ructtic;al surfa;S andx lies either in
multiple scattering appears, i.e., for non-convex bodies. But n E[hi iﬁfi‘gﬁ?}al’ 2; Tar:)in:icr)% into the exterior
sometimes, they also give large errors for convex bodies. y of the surfaceS

An iterative method is presented here, which develops i L ’
ideas of Kleinman and Rogﬁﬁ and which allows one to P> Pt 225223;?; scattered, and the total pressure,
approach theexactsurface pressure by @mal) number of '
iterationsN. The initial guess is the surface pressure foun
by using the plane wave approximati¢RWA).> In prin-
ciple, the accuracy of the method is limited only by the dis-
cretization error. Even a small number of iterations provides 0 .

a much better approximation of the exact surface pressure, p(x)=2JS p(Y)(?TQ(X'Y)dSy"'Zp'(X)' xeS (1)
than the familiar high-frequency asymptotics, outlined g
above. with  the free-field Green's function g(x,y)

Unlike standard boundary element methoBEM), = exp(—jkx—Yy|)/(4mx—y|) . Here,k=w/c denotes the wave
which solve the system of equations directly, the iterativelumber.o the circular frequencyc the speed of sound in the
solver can handle structures consisting of several ten thodluid, andj=1/=1 . All time-varying quantities should obey
sands of surface elemeris on regular personal computers. the time dependence expjwt). The operatorl is intro-
Hereby, the required computing time is proportional to theduced in the form
square ofM. In standard BEM the CPU-time is proportional F)
to the cube oM if, for example, the Gaussian elimination is Lp= p—ZL p(Y)a—nyg(X,Y)dSy on S, 2
used.

Work is presently in progress to provide detailedand Eq.(1) is rewritten as follows:
information about the corresponding software package P
and some sample results on the Web under the Lp=2p' on S ®
URL http://www.tfh-berlin.de~ochmann/iter. Further the adjoint operatdr* is defined by

gAssuming that the surface of the scatterer is rigid, we get the
Helmholtz integral equation for the total surface presgure
in the form
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g at each point on the surfa&eof the scatterer. Here,, is the
L*DZD—ZJ D(Y)O?TQ(X,)’)dSy, (43 normal surface velocity. The normalized impedance is de-
S X fined byZ,=2Z/(pc), wherep is the density of the surround-
where the overbar denotes the complex conjugate. Instead pfgy fluid.
Eq. (48 we also use the operator The generalization of Eq1) to an arbitrary surface ve-
g locity distribution takes the form
L*|0=|o—2fS P(Y) 5 —g(x.y)dsy, (4b) 5
o ’ . p(x)=2 J P(Y) 5-9(x.Y)dsy
which is L* without changing the differentiation from, to S y
n,. From Eq.(3), the expression

p=(p—alL*Lp)+2aL*p' on S (5) +2Ljwpvn(y)g(x,y)dsy+2p‘(x), XeS.

is obtained« denotes the relaxation parameter, which has to (8)
be chosen in an appropriate manfer.

Now, the surface of the structure is divided ik  Substitution of the impedance relation gives
boundary elements. After this discretization, the function P
p(y) is replaced by a vectq} which consists of the pressure p(x)=2J p(y) &Tg(x,y)dsy
values on different boundary elements. We have assumed S Y
that the pressure is constant over a single surface element. ik _
The operatot — aL*L (I is the identity operatgrin Eq. (5) JS mP(Y)g(X,Y)dSﬁ 2p'(x), XeS.
is replaced by a square Hermitian matv?b(a). The free 0
term 2aL*p' as a function ofy is replaced by a vectdn ©

consisting of the functlop vaIue; on different boundary ele‘Equation(l) is the particular case of E(9), whereZ,— is
ments. Then, Eq(5) provides a linear system of equations yniformly on'S. We emphasize that we consider a local im-
5=A- 5+5_ (5a) pedanceZy(y) depending on the surface point This is a
reasonable assumption for high Helmholtz numHbeas In
Starting with the PWA, an iterative scheme is applied to EqgeneralZ, is also a function of the surface pressure itself,
(5a). If in Eq. (5) the operatot. " is used instead df*, the  since the scattering from an elastic structure is a coupled
corresponding matri(«) fails to be Hermitian. However, system with fluid—structure interactidithe operators., L*,
it appears to beery closeto a real, symmetric matrix in all andL™ as described above are introduced in accordance with
of the considered examples of application. We have triedq. (9). Instead of Eq(7), we obtain
both formulations and found to our surprise that the use of
L* enables a better convergence rate, especially for the
cat's-eye structuretsee below.
The relative error

J
|DS(><)=fS |o(y)ﬂ—nyq(><,y)dsy

) jk
-2p' + — X,y)ds, . 10
N:IILpN I2p||’ © L Zo(y) PY9(xy)ds, (10)
|12p'[|
where C. Discretization error as a limit for the iteration

process
[Ipll:=~/ JS Ip(y)[? Although the valuesE, from Eq. (6) formally tend to

zero atN—, we realize that an infinitesimally small error
is the Euclidean norm, can be calculated at every iteratiogvith respect to the true solution cannot be achieved. The
stepN and is a measure of the accuracy of an iterative solureason is simply a discretization error, which limits the ac-
tion. The iteration process for the total surface pressure iguracy of Eq.(1) or Eq. (9) from the very beginning. The
completed when the relative err&y becomes sufficiently ijteration process no longer makes sense if the quafiity
small (cf. below). Then, in the far-field, the scattered pres- becomes smaller than some valewhich characterizes the

sure is simply obtained by using discretization error.
P The discretization erroiE, clearly depends on the
ps(x)zf p(y) ——a(x,y)ds,, (7) boundary element structure, incidence direction, frequency,
S J Ny and the specific implementation scheme. An appropriate
wherex is a point lying in the exterior of the scatterer. measure of the discretization error could be found if we

knew some exact solution of Eg9). To get the simplest
exact solution, consider the pressure distribution of the inci-
dent plane wave on the surfaBgassuming for the moment,

Analogous integral equations as Ed$), (5), and (7)  that the scatterer is sound transparent. The incident pressure
can also be obtained for the general impedance boundargn the closed surfacghas to satisfy the well-known integral
value problem, where the impedange- p/v,, is introduced equation

B. Impedance scatterer
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, ) 9 in Ref. 9, and can be combined with the iteration method.
FJ'(X):—ZJS p'(Y)aTg(X,Y)dSy For example, Kleinman and Rodchused the modified
y Green’s function technique for this purpose.

J .
+2L a—nyp'(y)g(x,y)dsy, xeS, (118 p, starting pressure

The starting surface pressure is found from the imped-

obtained from the Helmholtz formula for the interior domain. .
ance relation

If we add — 2p'(x) to both sides of this equation, multiply it A _
with —1, and substitute/an,)p'(y) = — jk cosfy,K)p'(y), Pstar= P'+ P°=Z(vy+vp) (14)

the result can be written in the form of E(®) coupled with some high-frequency approximation fSror

for v®. For example, with the assumption of the PWA
pS=pcuy (15

jk , and taking into account thaZ=pcZ, and vin=(1/pC)
I I > .
ZL Zoy) P (Y)9(x,y)ds,+2p'(x), xeS, X cosf, k)p' on the surfaces, we find

) ) d
|0'(x)=2fS p'(y)a—nyg(x,y)dsy

(11b Zo(1—cogny k)
start— 7 1 p.
0

(16)
where Zy(y) has to be chosen in the special form
Zo(y)=1/COSOy,lz)- Here, we assume, that the incident waveEquation (16) is a local relation. It provides a reasonable
has the formp'= pexp(~jk-x) with wave number vectok. approximation forZy>1 but leads to a considerably larger
We see that the incident pressure is the exact solution of ETOr atZo<<1. Moreover, Eq.(16) fails in the vicinity of
(9) at some specific value of the surface impedance. It i€o=1, where the approximatiops=p' could be applied.
therefore straightforward to use this solution to characterize A Simple way to slightly improve the PWA is to intro-
the discretization error. The discretization erfr can be duce a global proportionality factoy into Eq. (15). After

found if we substitute’ instead ofpy, into Eq. (6). It gives  that, the starting pressungy= s ¥) from Eq. (16) is
Lp | substituted into Eq(6) instead ofpy . It is easy to show that
Lp'—2p'

the relative erroiEg,, found from EQq.(6), if py=Pstarl V),
S 12Tl

(12 will be a polynomial of second order with respect o Its
, minimum gives us the desired valuepfThis value depends
The operatoL for the impedance problem has the form 1, the houndary element structure, incidence direction, fre-

quency, and impedance. For the structures studied below in

1%
Lp=p—zf P(y) 5-9(x.y)ds, this paper, we have found that &8<1.2. However, the
S y change in the relative error was usually not very high. It
jk should be emphasized, that the formulation of a simple high-
—ZL mp(y)g(x,y)dsy on S. frequency approximation for the impedance problem is in

general a difficult task, and is not the subject of this investi-
The calculation of the discretization error in E2) requires  gation.
the choiceZO(y)=1/cos(1y,IZ) .
While performing the integration we assume that thell- RESULTS
surface pressure and the surface impedance are constant over o numper of calculations were made to check the per-

each boundary element. Diagonal terfia x=y) are ig-  formance of the iterative method described above. Finite cyl-
nored in the first integral on the right-hand side of 9,  jnders, a sphere, and cat's-eye structures were considered at
since they are zero if plane boundary elements are Yted. yarious Helmholtz numberkas>1 and various incident

the second integral, they are found by the integration of thgyngles. The cat's-eye structures are spheres without one oc-
Green function over a boundary element surface. The integnt (cf. subsection B and Fig. 3 belowThose structures
gration is made in polar coordinates. Then, a discretizatiopgye either rigid surfaces or locally/globally reacting sur-
errorE_ of about 1%—-2% is obtained for different structureszces with different values of the surface impedaZicelere,

with about 6 boundary elements per wavelength. We stop thge present some resuilts for the sphere with 6096 boundary

iteration if elements, for the cat's-eye structures with 7911, 24 832, and
En<sE_, (13) 57 470 boundary elements, and fo_r the finite Cylind_er with
13 796 boundary elements, respectively. All calculations be-
wheree is some factor smaller than or equal to unity. low were carried out on a P@ntel Pentium 166 processor

For the sake of simplicity, it is assumed that particularA Rigid and | q h
critical frequencies, caused by resonances of interior vol-"- 'gid- and impedance sphere
umes and leading to nonunique solutions of the integral At first, we examined the well-known case of plane
equations, do not occur with respect to all performed calcuwave incidence on a sphere of radias with a constant
lations. Established methods to overcome this uniquenessurface impedance. In this case, a comparison with the ana-
problem can be found in many papésee the literature cited lytical solutiorf is possible. The direction of incidence is
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FIG. 1. Directivity patterns for the spherele=20.9 interms of the polar angl@. Vertical scaling gives the target strength TS in 8.The exact solution
(circles in comparison with the iterative solutidihick line) at Z,=«; (b) the same aZ,=4; (c) the same aZy,=0.4 .

along the negative axis. We introduce spherical coordinates the scattered pressure is calculatekat 20.9, which re-
x=Rsing cose, y=Rsind sing, z=Rcos#. The field of the  quires 30—35 terms in the series on the right-hand side of Eq.
incident plane wave' is axisymmetric and does not depend (17) to achieve an error smaller than 0.1%.

on the azimuthal angleo. Hence, the analytical solution The directivity patterns of the far-field scattered pressure
takes the form atka= 20.9 are shown in Fig. 1 &,=,4, and 0.4, respec-

o tively. The circles indicate the exact solution, whereas the

DS(R,G):DoE D, hgz)(kR)Pn(cos 0), 17) thick curve repres_ents the results of the iterative solver.

n=0 There are nearly six elements per wavelength for the sphere

whered is the polar angleR is the radius of the observation With 6096 boundary elements. In Fig. 1, the target strength

e M 0
spherehﬁf) are the spherical Hankel functions of the secondTS is given by
kind andP,, are the Legendre polynomials. The coefficients
D [ b I

n &re given by Ts=10log"| (19
Jn(ka)—jZojn(ka) Hir=1m

h(ka)jZeh'?' (ka)’ 19

n (ka)jZohy™ (ka) wherel; is the incident intensity andl, is the intensity of
wherej,, are the spherical Bessel functions and the differenteturn at 1 m(The target strength was calculated in the far
tiation is made with respect toa. The analytical solution for field and then projected back to the distan€d on from the

Dn=—(=1)"(2n+1)
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TABLE I. Numerical data for the sphere. in comparison with the exact solution. Note that the mean
difference would be nearly five times smaller. Although very
good convergence could be observed in any case, the number
E.% 19 19 19 of required iterations increases with decreasing impedance.

Impedance Zy=00 Z,=4 Z,=0.4

Starting error,, % 22 38 53 This incr is mainly relat the higher inaccur f
Limiting error, % 0.6 0.4 11 h S ..Clease s mainly related to the highe accuracy o
Number of iterations 7 10 12 the initial pressure. .

Maximum error of the 05 1.3 0.6 For the purpose of comparison, we also present the cor-
scattered pressure level, responding data in Fig. 2 for the PWA. The maximum dif-
dB ference in the directivity pattern of the scattered pressure

reaches 4, 9, and 12 dB, respectively. Thus, only for the rigid
sphere, the PWA might be an acceptable quantitative ap-
scattere). It is evident that the iterative solver agrees excel-proximation. The familiar Kirchhoff approximation as well

lently with the exact solution. as the Morse and Feshbach methede Ref. 3, part II, p.
The iteration data are presented in Tablefl also Fig.  1551) provide nearly the same accuracy for the rigid sphere.
4 below). The second row gives the errgp of the improved It should be pointed out that the solution at constant

PWA (see previous sectignaccording to Eq(6). The im-  surface impedance of order unity predicts very large surface
proved PWA is used as the initial pressure. The limitingpressures. The surface pressure amplitude may redeh 25
error is chosen 0.2-0.6 times smaller than the vBluérom  atZy=1 andka= 20.9, which hardly seems possible from a
Eq. (12). The last row of the table indicates the maximum physical point of view. The reason is that the chaige=1
difference in the directivity pattern of the scattered pressurefor a locally reacting surface impedance is a non-physical

a0, B, D
HHLR,]
; Q Qlc‘; Oy
R “

e

(c) 270

FIG. 2. Directivity patterns for the sphereke=20.9 interms of the polar angl@. Vertical scaling gives the target strength TS in ¢8.The exact solution
(circles in comparison with the PWAthick line) at Z,=«; (b) the same aZ,=4; (c) the same aZ,=0.4.
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FIG. 3. Geometry of the non-convex cat's-eye structure. A part of the f 30 301\
sphere corresponding to>0, y>0, z>0 was cut out. Incident angles are % 2 \ 20 \
always given in spherical coordinates. \ .
10 . 10 \‘\‘\“
N
assumption. Due to extremely large amplitudes and pressure  ® g% %% % 10 ¢ 7 2 3 i s
N N

gradients the condition of six elements per wavelength be-
,Come_s msufﬁmeqt for numerical purposes. Nevertheless, thEIG. 4. Relative erroEy of the iterative solution depending on the number
iterative solver still works, even @,= 1. However, the con- o jterationsN. (a) Sphere with 6096 elements ka=20.9, Zo=2: (b)

vergence rate and the corresponding accuracy are poor, inatl atka=20.9, (45°,0°) incidence, an@,=o; (c) catl atka=20.9,
deed. (45°, 45°) incidence, and,=5.0 over the whole surfacéd) the same as

(c) but the cat's-eye surface is coategl, from Eq.(20) with 20:0.9] and
] ] Z,== otherwise;(e) cat2 atka=41.9,(45°,0°) incidence, andy=; (f)
B. Non-convex structures with partially coated cat3 atka=62.8, (45°,0°) incidence, and,=c.

surfaces
iteration), which can reach 50%. The surface is either rigid

Th_e non-convex structure conside_r_ed is s_hown in Fig. 3[Fig. 4@, (b), (&), ()], or has a finite constant impedarie
It consists Qf a sphere, where the p_osmve octast the pgrt [Fig. 4(c)], or is only partially rigid and has a finite absorbing
corresponding tox>0, y>0, z>0) is cut out. The region impedanceZy(y) on the reflecting surface of the cat's-eye

of the missing Qctant is called “cat’s-eye, since it acts like ig. 4(d)]. The functionZ,(y) was found in accordance
a three-dimensional reflector. We have considered three su th Snellius’ law

structures with the same geometry but with different num-

bers of boundary element§911, 24 832, and 57 4J0to Zo .~ PaCa
achieve large values dfa up to 62.8. They are called catl, Zo(y)=— — =, Zo= r (20)
cat2, and cat3, respectively. The incident angles \/1_(Ca/c) sir’(ny k) p
9=90—-6,¢ are (¥,¢) =(45°,0°) and @,¢) =(45°,45°) 15
in spherical coordinates. This system of coordinates is cho- /

sen in such a way that the direction of incidence is along the
negativex, y, or z axis for (9,¢) =(0°, 0°), (¥,¢) =(0°,
90°), and @,¢) =(90°, 0°), respectively. Hence, the inci-
dent wave illuminates the reflecting area of the cat’s-eye, so
that multiple reflection/scattering occurs.

For the uncoated cat's-eye, multiple reflection gives an
important contribution to the backscattering pressure. The
above mentioned approximation methods, like the PWA,
etc., are unable to describe this effect. Therefore, we expect
rather inaccurate results using those approximations. -

Figure 4 shows the error of the total surface pressure as 0 e : ‘ ‘ ‘
a function of the iteration numbe at differentN<10. To 0 10000 20000 30000 40000 50000 60000
find this error, Eq(6) was applied again. The curves in this total number of boundary elements
figure characterize the convergence rate of the iteration pro- _ o ,
cess. For the purpose of comparison, Fig)dndicates the 1%, % ™rssea e Pe feraion o « ton o e ruber o
convergence rate for the rigid sphere. The datdlal al-  pentium 166 processor. Circles show the data for the cat's-eye structure
ways give the relative error of the improved PW2eroth  with a different number of boundary elements.

-
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T
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N

time per iteration, hours
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where the indexa denotes the absorbing coating. The minusFIG. 8. Relative erroEy of the iterative solution depending on the number

sign has to be chosen since the normais directed into the

exterior of the scattere®. If c,~c and cos(1y,IZ)<0, then

Zo(y)zzolcos@y,ﬁ), which corresponds to the normal im-

pedance of the incident plane wave @n[cf. Eq. (11b
abovd.

of iterationsN for a finite cylinder with 13 796 elements kb=16.4,kl
=61.2.(a) Zy=, (0°,0°) incidence(b) Z,=8 over the whole surface and
(45°,0°) incidence(c) Zy=, (60°,0°) incidence(d) Z,=<, (75°,0°) in-
cidence;(e) Zy=, (90°,0°) incidence(f) Z,=8, (90°,0°) incidence.

It is obvious that the primary inaccuracy of the PWA is been observed for all investigated surface models with dif-
improved very rapidly by only a few iterations. This has ferent numbers of boundary eleme&96—57 47Dand at

270

FIG. 7. Directivity pattern for cat3 in terms of the polar angléxz plane
at ka=62.8, (45°,0°) incidence, and,=~. Vertical scaling gives the

target strength TS in dB. The thick curve shows TS obtained by the use of
the iterative solver aN=5; the data corresponding to the PWA are indi-

cated by circles.
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any ka from 20.9 <ka< 62.8. Analogous results were ob-
tained for scattering from different finite cylinders tocf.
below).

The results foN>10 are not shown in Fig. 4. The con-
vergence rate becomes smaller with increadihgbut the
error always converges to zero. Nearly 20 iterations are re-
quired to obtain the accuracy of 1% in the total surface pres-
sure for the cat’'s-eye structure. Note that the corresponding
values of E; from Eq. (12) are 1.78%(catl, ka= 20.9,
(45°,459 incidence, 1.87% (cat2, ka= 41.9, (45°,0 inci-
dence, and 1.91%cat3,ka= 62.8,(45°,0 incidencs.

Figure 5 indicates the required processor run time to
perform one iteration by the iterative solver. This is the most
important information for applications. More precisely, one
iteration step requires 8.4 min for the sphere, 0.23 hours for
catl, 2.2 hours for cat2, and 13.1 hours for cat3. The inter-
polation curve in Fig. 5 approximates the expected quadratic
dependence with a relative accuracy of 9% in the considered
domain. To give an idea of the data presented, recall, that a
typical calculation for the cat’s-eye structure with 7911 ele-
ments(accuracy of 1% in the total surface pressure is ex-
pected takes 4-5 hours processor tinflatel Pentium 166
processor.

Figure 6 shows the total pressure on the surface of cat2
atka=41.9 and(45°, 09 incidence. The surface is assumed
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8(b), (f)]. The frequency was fixed to achievea=16.4,
kl=61.2. This approximately corresponds to the condition of
six boundary elements per wavelength . The angles of inci-
dence are changed fro(@°, 0°) (plane wave incidence per-
pendicular to the cylinder axigo (90°,0°) (plane wave in-
cidence parallel to the cylinder axisThe corresponding
values ofE; from Eq.(12) range from 1% to 2%.

The primary inaccuracy of the PWA is again improved
rapidly by only a few iterations. Analogous results were ob-
served in case@), (iii) for different frequencies and different
angles of incidence also. Figure 9 shows the total pressure on
the surface of cylindefii) atka=16.4,kl=61.2 and(0°,0°)
incidence, after 10 iterations. The surface is assumed to be
rigid. Figure 9a) gives the amplitude distribution, Fig(l9
shows the phase distribution. The diffraction pattern on the
illuminated part of the surface can be seen in Fig).How-
ever, it is only poorly developed in comparison with the case
SN of the cat’'s-eye structures. This becomes evident if we com-
314 236 157 079 000 079 157 236 3.14 pare amplitude scaling in Fig. 6 and Figaf respectively.
The phase distribution in Fig(B) is very close to that of the
incident wave.

IIl. CONCLUSIONS

The presented iterative solver of the Helmholtz integral
equation makes it possible to calculate high-frequency scat-
tering from complex impedance structures, consisting of sev-
eral thousand boundary elements, in relatively short comput-
ing time on regular personal computers. Depending on the
number of iterations, high-accuracy solutions can be ob-
tained for both the surface pressure and the scattered far-field
pressure. The error of the iterative solver is limited by the
discretization error of the surface Helmholtz integral equa-
tion. These positive results give us confidence to extend the
method to the application of sound radiation problems and to

FIG. 9. Total surface pressure normalized by the incident pressure for the computation of sound fields in closed rooms of arbitrary
finite cylinder with 13 796 elements &a=16.4,kl=61.2,Z,==, and shape.
(0°,09 incidence.(@) Amplitude distribution;(b) phase distribution.

(b)

to be rigid. A well developed diffraction pattern is clearly ACKNOWLEDGMENTS
seen on the surface of the cat's-eye.
Finally, Fig. 7 compares the far-field scattered pressure, |
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A stochastic model for wave localization in one-dimensional
disordered structures
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This paper presents a probabilistic study of the effects of structural irregularity on wave propagation
along an infinite 1-D chain. A general integral equation method based on Markov chain theory is
used to determine the phase probability density fundjiaif) at the scatterers distributed irregularly
along the chain. The scatterers could be atoms in a one-dimensional crystal, or ribs on a flat plate
or membrane. The integral equation derived for the phase pdf is simplified considerably when the
scatterers are distributed completely randomly or quasi-periodically. In these cases, the integral
equations may be asymptotically solved for the phase density functions in the limit of weak or
strong scattering; the localization factors are then obtained. The present approach is quite general
and is directly applicable to any disordered one-dimensional system consisting of identical scatterers
that are arranged according to a probability distribution function. The validity of the present
asymptotic solutions is examined and verified by comparing against the existing analytical solutions
for simple atomic or mechanical disordered systems. 198 Acoustical Society of America.
[S0001-496628)00402-7

PACS numbers: 43.20.Fn, 43.30.Jx, 43.4Q0A)N |

INTRODUCTION single band approximation result, which is most valid within
the central region of a passhand and becomes singular near

Wave propagation in periodic systems has been exterthe edges of the band. Hodges and Woodhouse did realize
sively explored for many decades. It is well known that therethe importance of the detailed form of a phase density func-
is a characteristic band structure in the dispersion relation afion on the average energy density and the localization
the propagating waves. Within certain frequency rangesength, but they did not provide a systematic approach to
passbands, waves, or disturbances may propagate throughaigitermine the phase density function for any given configu-
the system without attenuation for a conservative systenration of a one-dimensional disordered system. The unique
Outside of these passbands, the stopbands, the waves exmontributions that we try to make in the present paper are
nentially decay as they travel through the system. In manyirst to find a systematic approach for the determination of
engineering structures, however, certain imperfections or irthe phase density function, and second to derive a localiza-
regularities always occur. The occurrence of these irregularition factor that is uniformly valid in both passbands and
ties generates a cutoff length for the passbands, thus prevertopbands. One of the interesting results derived from our
ing long-range propagation at all frequencies. As a result, thanalysis is that the irregularity in a disordered system
response of the system is exponentially localized near themooths out the singularity appearing at the edge of the pass-
source(Anderson localizatioh. The large body of existing band. Furthermore, we will show that Hodges’ results are the
knowledge derived from periodic systems can not explaifeading order terms of our asymptotic results in the limits of
this phenomenon either qualitatively or quantitatively. both weak and strong scattering.

The phenomenon of energy localization due to structural  In this paper, we consider wave propagation and local-
irregularities was first discovered by Anderson in solid statdzation along a general one-dimensional chain with an array
physics’ A great many results have since been obtainedf identical scatterers distributed according to a specific
from the study of quantum mechanical systems. Anderson’probability density function of the space separation. The sys-
work was first extended to structural dynamics by Hodges,tem could be an array of atomic potentials, a ribbed mem-
who studied the localization of vibration along a one-brane or a ribbed plate. The general problem is formulated
dimensional chain of coupled pendula or a flexible beamwithin the framework of Markov chain theory. A systematic
with mass and spring constraints. The localization in otheintegral equation approach is used to determine the phase pdf
one-dimensional mechanical systems were discussed It the scatterers along the chain. The main assumption used
many investigators with various statistical methddSAn here is that the interaction among the scatterers is limited to
assumption commonly used in the existing literature is thahearest neighbor coupling. Thus Markov chain theory is di-
the probability density functioripdf) of the phase of the rectly applicable to the system. The paper is outlined as fol-
standing wave is uniform and is independent of specific distows: A basic formalism is described in Sec. I. A traveling
tributions of constraints or scatterers along the onewave description is introduced so that the phase of the waves
dimensional systerh.This assumption often leads to the may be expressed in terms of single reflection and transmis-
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ITAE Y IRA e == 3A €Y, )

j-th bay »
L ol oy +1TA e Wi+ IRAEI= LA e 14, (4)
—I l—l The above two equations give
X1 X1 . . .
A1 +Te? e '%i—ReYi 5
FIG. 1. A chain of randomly spaced scatterers. Aj - ei v _ Re_i’”i - iTe_i‘/’J’ ©)

sion coefficients of a scatterer. In addition, the ratio of theNOte from the above equation that the ratio of the amplitudes
amplitudes in two adjacent baysells depends only on the &t two adjacent bays depends only on one random variable,
phase of the wave and the reflection and transmission coef ¢; Or #;. Define the ratio of the magnitudes of the
ficients. Then, a brief review of Borland’s wdrkis pre-  résponse in adjacent bays:

sented and a general integral equation for the phase density

function is introduced. In Sec. Il the integral equation is f(¢))= >
solved asymptotically at the limit of weak or strong scatter- Al

ing for two different chains of scatterers: one with com- From Eq.(5), we have

pletely randomly distributed scatterers and the other with

quasi-periodically distributed scatterers. The asymptotic so- H)= 1+|R|*~2|R[cog2¢; + Og)
lutions are valid for a general one-dimensional system. The bj)= 7|2

differences between two systems are characterized by their

single reflection and transmission coefficients associated IT|?

yvith each s_catterer. In Sec. I!I, some examples are discussed = 1+|R|2—2|R|cos 2¢; — br) '
in order to illustrate the application of the present approach !
and verify the asymptotic solutions against the existing rewhereoy is the phase angle of the reflection coefficient. The

(6)

)

sults. relationship between the phases on the left and right sides of
each scatterer may be obtained from the above as
I. BASIC FORMALISM cog2¢;+ )
A. Traveling wave description 1+|R]2 |T|* 1
: , . , , = - . (8
In this section, we introduce a traveling wave descrip- 2|R|  2|R| 1+|R|2-2|R|cog 2¢; — Og)

tion for the vibration in each bay along a disordered chain

and characterize the behavior of each scatterer by its refledlote that Eqs(7) and(8) are general and valid for all one-
tion and transmission coefficients. Consider a onedimensional wave bearing systems. The only difference
dimensional array of scatterers distributed according to &mong the different systems lies in the single reflection and
specific probability density function. The average Spacindransmission coefficients associated with each scatterer. Fur-
between two neighboring scatterers is assumed to be mudRermore, Eq(7) implies that once the phase is determined
larger than the attenuation length of any evanescerfen the amplitude may be obtained.

nearfield. Therefore, the nearfield in the vicinity of a scat-

terer may be ignored in the standing wave solutions, namely, _ o
B. Markov chain model and localization length
W(Xx)=A;cog Ks(Xx—X;)+ ¢;]

In the previous section it was shown that the dynamic
=2 AjCodKe(X—Xj_1) + ¢j_1], (1)  solution for a particular irregular chain is entirely contained

in phase of the response, and further, that the phase may be
determined iteratively in terms of an initial condition. Ex-
ploiting this fact, the expected behavior of an irregular sys-
spectively(that is, — m/2< ¢;< /2 and — /2= ;< 7/2). tem may be determined completely following a method due

7 . . .
The uncertainty in sign is due to the fact that the phases ar® Borland: The application of this method to structural
reduced to the intervdl— /2, 7/2]. The above standing acoustic problems was suggested in a recent review afticle.

wave solution may be rewritten in terms of traveling waves ~ SUPPOse then that we have an ensemble of such chains
scattered away from each scatterer: (i.e., irregularly ribbed platgsand that the initial phase is
_ _ _ _ specified in terms of a probability distributign(¢g). The
W(x)= AKX T4 LA @ Tkxmx) =19 distributionp, may be arbitrary. The probability distribution
of the phase in the next bay is determined by both the phase
discontinuity across the scatterer, E8), and the probability
+ 1A @ iksx—xj_1) =ity 2) distribution of the scatterer’'s positiop(¢). This relation
— 27 . .
] ) o must take the form of the Chapman—Kolmogorov equation
Let R and T be the single reflection and transmission coef- -
ficients of each scatterer. The continuity condition across Pn(¢n)=f K(bn 1,b0)pn1(bn )ddn 1,  (9)
each scatterer may be expressed as - w2

whereA; is the amplitude in thg¢th bay,x; is the coordinate
of the jth scatterer, and; and¢; are the reduced phases on
the left and right sides of thgth scatterer(see Fig. ], re-

=+ %Ajeiks(x’xj—l)ﬂﬂbj—l
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with

2
7=<|nf(¢)>=f_ /Zp(¢)lnf(¢)d¢, (19

2
f— w/2pn(¢”)d¢”: L (10 wheref(¢) is defined by Eq(7). The localization length is
where we have written the recursion relation for ttle bay. simply
Here, the kerneK(¢,,_1,¢,) is the one-step transition prob- |=2b/vy, (20

ability density function given

12 —D(7)+n
K(nd)= 1 2, p(%

sn=

whereb is the average distance between two adjacent scat-
terers. The response due to any far away source hence decays
exponentially according tav(x)<exd —x/I] as the distance
from the source increases.

In the rest of the paper we simplify the integral equa-
tions derived in this section and search for asymptotic solu-
tions in the cases where the scatterers are distributed com-

function. The functiorD (%) is the reduced phase at the right

side of a scatterer given that the phase at the left side of thi
scatterer isy. Clearly, D(#) can be determined by solving
Eq. (8). The above equation may be simplified if unreducedA. Chains of randomly distributed scatterers

¢»—D(n)

1
+k—sp(k—s>h(¢—o<n)>, ay

¥ ASYMPTOTIC SOLUTIONS

phase is used:

1 —-D(#
K(n,¢)= k—p(¢k—u). (12)
After n steps of iteration, Eq9) becomes
/2
P n) = fﬁ 7_rlan( $0,®n)pol bo)dey, (13
whereK,, is given recursively by
2
Kn(‘f’o:‘f’n):J’ Kn-1(éo,bn-1)
— a2
XK(d’n*l’qsn)d(ﬁn*lv (14)

andK,=K.

It has been proved by Feket® that K, (¢g,#) con-
verges uniformly to a limiting functiop(¢) independent of
¢o, that is,

im Kn(¢o,d)—p(),

I
n—

(19

if Kn(¢o,¢) satisfies certain conditiofs® In addition, the

functionp(¢) is the unigue solution of the following integral

equation,
w2
p(</>)=f K(n,é)p(n)dn, (16)
— 2
with a normalization condition
w2
f_ /zp(¢)d¢:1' (17)

As a result of Eqs(15 and (10), p, given by Eq.(13)
converges uniformly t, that is,

lim pn(#)—p(), (18)
n—oo

and is independent gf,. Also, recall thatp, is the pdf for
the phase in thath bay.

Once the phase density functigi(¢) is determined

from Eq.(16), the localization factor may be calculated from

the following definition:
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In the case of completely randomly distributed scatter-
ers, the probability density function of the separation be-
tween two adjacent scatterers is given by

1 -S
wheres is the spacing anth is the average spacing. It has
been shown by Borlardd that inserting the above into the

general integral equatioril6) with some manipulations
yields the following equation:

(21)

¢
plo1=A=n, po)do, 22

whereA is a constant ang.= 1/(k;b). Now let us seek the
asymptotic expressions for the phase-density funcifg)
and the localization length in the limits of weak and strong
scattering.

1. Weak scattering

In this case, the reflection coefficient is much smaller
than unity and the transmission coefficient is close to unity,
that is,

|IR|<1, |T|~1. (23
Furthermore, from energy conservation, we have
TI?=1-|R% (24)

Solving Eq.(8) for ¢; in terms ofy; andR, and neglecting
the terms of order higher thgR|?, we obtained

COY2¢;+ Or) = — cOY 24— Or) + 2|R|SIN*(2¢; — O)
+4|R|?sir?(2y;— g)cog 24— Or)

+O(|R?), (25)
and
_1 w .
$=D "(¥p=5 T~ Or+ [R[SIN(2¢);— Or)
RE 22— O(|R]® 26
+ SN2y~ Op) + (IRP®). (26)
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Since the above equation is valid for all the identical scatter- 6 4
ers, the subscript,, may be dropped in the subsequent ex- ¢=D Yy)=— (arcta{—sm(z// 0rI2)
pressions. 7|2
At high frequencies, i.ekb>1 or u<1, the integral
equation(22) may be expanded asymptotically by iteration, + arctar( 4|2

p(p)=A—Au(¢p—D ()

+0O(|T|%). (36)

Note thate is the reduced phase, i.e:,m/2< ¢< /2. Thus,

+AM2J’¢_1 f@’f_l o(0)d6dy. 27 thg plus gign should be chosen in. E@G}. In general,
() JD 1) |sindg>|T|%, Eq. (36) may be further simplified as

Inserting Eq.(26) into the above and neglecting the terms of -
order higher tharu|R|? or u?|R| yield the asymptotic ex- ¢=D (yp)=— R —=sgn 0R)+arctar{ —sin( ¢
pression for the phase-density function at the left of the scat- 2 TI?
terer,
—0r12) | | +O(|T|Y. (37

71- .
p(¢)=A—AM( Or— - ~[RIsiN2¢— Or)
Inserting the above into Eq27) and ignoring all the terms

2 . .
B %st(Zd; 0r) | +O(u?), 28) of order higher thanu yields
0 T
where we have used the fact that p(P)=A—Au| ¢+ ?R— Esgr( 0r)
|¢=D ()| ~O(R]), [RI~O(w). (29) A
Similarly, the functionf(¢) defined by Eq(6) may be ex- +arctar< —zsin(qs— 0r/2) +0(n?), (39
panded asymptotically at the limit 9R|<1, and its loga- T
rithm may be written as where the constanA is determined by the normalization
Inf( )= —2|R|cog 2+ O) + 2| R[2SInP(2¢p+ ) condition Eq.(17):
3 1
+O(|RP®). (30 A=—|1+pu|0 sgr(GR) +0(u?). (39)
The localization factor may be obtained from E¢k9), (28)
and(30), Thus, the final asymptotic solution for the phase density
function may be written as
T
7=A|R|27T(1—,u( O3 +Amu|R|%sin20g+ O(|R|%), 1 ul6g 4
31) p(d)):;-l—; ——¢+arctar( Wsm(qb BR/2)>>
where the constanA is determined by the normalization
Y +0(u?). (40)

condition(17), that is,
Using the condition given by34), we may expand Eq7),

= 1 . (32  as follows:
m(1— p(Or— wl2))
_ 2
Substitution of the above into E31) yields f(p)= 2 il Sir?( ¢+ 0r/2) + O(|T|?). (41
y=|RI?(1+ usin26g) + O(|R|*). (33 T’
Then the localization factor can be obtained from H@d9),
(40) and(41) as
2. Strong scattering 2(2—|T%) 2

0
yzlnT—ZanJr % ) /2(%{— ¢> InSir?( ¢

Consider the case where

T|<1, |R|~1, |R|?>~1-]|T|% (34) w2 4
o
+ 60r/2)dp+ —f arctan ——sin(¢— 6g/2)
m) - 72 |T|2

At this limit, Eq. (8) may be simplified in the following
asymptotic form;

X Insir?( ¢+ Or/2)dp+ O(u?|T|?), (42)
COS 2+ ) = 16sTnZ(¢— ORl2)—|T|* E+O(|T|6), where the identity
16sirf(4— 0g/2) +|T|* 8 T
(39 f InsirA( o+ 0x/2)dp= — 27rIn2 (43
where ¢; and ¢; have been replaced by and ¢, respec- G
tively. Solving the above equation fa¥ gives has been used.
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In the limit of high frequencies|T|~u<1, the first only choose the positive solution to E@8). Let
order approximation of the above equation corresponds to a
uniform.phase density function. The localization factor may b1=p—kb+ ™ Or., (52)
be obtained as 2

y=—In[T|?+O0(w). (44) e=kea. (53)

Hodge$ showed via a much more elementary method tha%ubstituting Eqs(52), (53), and (51) into Eq. (48) and ex-

i H H — 2 2
the transmitted intensityly=|An|*/|Ao|", ”‘;N"“gh'\' fan- panding the integral up to the first order |&], we obtain
domly arranged scatterers behaved gs|T|?", and, there-
fore, 1 (dytel2 IR| _

p(¢)=—f p(0)d0— —p(p1+ €el2)sin(2¢,
In €Jg—en2 €
y~—In——~—In|T|?, (45)

In-1 R .
which is exactly the first term in Eq45). TRt et —p(b1 €12)sin(2¢,+ O =€)
From the above discussion, one can see that Hodges’

3
result, Eq.(45), is derived under assumption of uniform +O(|RP®). (54)

phase density function and is valid only in the limits of i il pe clear by the end of this subsection that the second
strong scattering and high frequencies. The error resultingq the third terms in the above are of the orde|Rif.

from this assumption is of the order pf=1/(ksb). Note the fact that the phase density functjoiis a pe-
riodic function of period equal ter and it must be a constant
when the scattering strength is zero, i|®|=0. Thus, we

B. Chains of quasi-periodically distributed scatterers .
d P y may expand in the form of

in the limit of weak scattering

©

For an array of quasi periodically distributed scatterers, )
the probability density functiofpdf) of the separation of the p()=po+]| R|n§1 (Ancosné+Bysin2ng), |R[<1,
adjacent scatterers may be expressed as (55)

wherep, is a constant and may be determined later by using
the normalization conditio17).

Inserting Eq.(55) into Eq.(54) and neglecting the terms
of order higher thanR|?, we obtain
wheres is the spacingp is the average spacing, aja is the ©
largest possible deviation from. For a nearly periodic or
quasi-periodic array of scatterers, the following condition isn=1

1 1
p(s)=7, [s—bl=za,

=0, |s—b|=3a, (46)

sinne
?cos?nqﬁl— (=1)"cosn(p,+ksb+ 0g)

n

implied: x .
sinne )
ka<1. (47 + 21 Bn<?sm2n¢1— (—1)"sin2n( ¢, +ksb
n=
Inserting Eq.(46) into the integral equatioril2) for unre- o
. sine
duced phase yields i BR)) == PoCOL 21+ Or). (56)
_ 1 [Ux¢)
plé)= ke Uy(d) p(0)d, (48) Multiplying cosh¢; and sindi¢g,, respectively, on both
sides of Eq.(56) and then integrating the equation over

where [— w/2,7/2] yield

Ul(d)): D_1(¢_ksb_ %ksa)! (49) SinnE

( —(—=1)"cos(ksb+ 6g) |A,
_p-1 1 Ne

U2(¢)_D (¢_ksb+ Eksa)- (50)

The integral equatio48) can be solved asymptotically —(=1)"sin2n(ksb+ 6r)B,,
in the limit of weak scatteringR|<1. In this limit, the un- 2sinecosix
reduced form for the phade " 1(¢) may be obtained from =—poon1, (57
Eqg. (25) as

-1 = il i — Ngj k b ﬂ_ _ n k b
D (¢)—nw+5+¢— O+ |R|SIN2p— OR) (—1)"sin2n(ksb+ Og) A+ ne (—1)"cosh(ks
11p|2ai _ 3 2sinesing,
+ z|R|sin2(2¢p— 6r) + O(|R[®). (51) +0R) Bn:_%Poénlv (58)

Note from the above thdd ~1'(¢$)>0 at the limit,|R|<1.
Thus, U,(¢)>U4(¢), and p(¢)=0 or p(¢)<0 for —oo where §;,=1, andé§,;=0 for n# 1. Solving the above two
<¢<». Sincep here is a probability density function, we equations forA, andB,, gives
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_ 2posine (sine/ €)coshr+ cog 2k b+ 6r) N sine

€ sir2(kd+ Og) + (sine/ e +cosA kb + Og))?’ —IRI2 € 66
(59) Ymax | | (66)

1

122'003"1'E : sin(2ksb + GR_) (Sine/ €)sindr ., atthe centers of the stopbands in the dispersion relation, that
€ sif2(ksh+ Og) + (sine/ € +cosA kb + O))? is kb= [(2m—1)/2] w— 6 for m=1,2,3 . ... As aresult,

(60) a stopband appears at every half-wavelength. Furthermore,
the result in Eq(63) implies that, in the absence of irregu-
larity, i.e., e=ksa=0, which corresponds to a periodic sys-

A,=B,=0, n=2. (61)  tem, the localization factor is zero within a passband, i.e.,
ksb# [(2m—1)/2] m— 6g, and becomes singular within a

Substituting the solutions given by Eq&9), (60) and (61) stopband, kb= [(2m—1)/2] w— 6. Therefore, along a

and

into Eq. (55) gives regular chain, the waves may propagate throughout the sys-
tem without attenuation within a passband but are com-
1 14 2|R|sine pletely cut off within a stopband. The presence of irregular-
7 € ity has a twofold effect on wave propagation: one is to
generate a cutoff length for a passband; the other is to extend
[(sine/ €)cog2¢+ OR) +cog2¢p—2ksb— 6r) ] the cutoff length in a stopband.

sirP2(ksb+ 6g) + ((sinel €) +cosA kb + 6))? |’
62) Ill. EXAMPLES AND DISCUSSIONS
o N The results derived in the last section are valid for any
where the normalization condition has been used to deteipne-dimensional disordered system consisting of identical

mine po. scatterers that are distributed completely randomly or quasi-
The localization factor may be obtained from E¢9),  periodically. For a particular system, one first solves the
(30), and(62) as wave equation for a single scatterer, determines the single
_ ) reflection and transmission coefficients, then simply inserts

y=|R|? 1-sirfele 63) these coefficients into the general expressions given in the

last section and calculates the phase density function and the
localization length. Here, we use a few examples to illustrate
with |R|<1. Within a passband, more preciseli(sb+ 6z the application of the present approach and verify the present
—[(2m—1)/2] w|>0(€?), the above equation may be fur- solutions with some existing results.

ther simplified as

sir2(keb+ 60g) + (sine/ € + cosA kb + 6r))?’

A. One-dimensional chains of randomly spaced
identical atoms

The first example is that of electronic waves propagating
along a one-dimensional infinite chain of randomly spaced
wherek, is the Floquet or Bloch wave number of the asso-atoms withs-function potentials. A similar problem has been
ciated periodic array and is determined by the following dis-discussed by Borlafldn the weak scattering case. Here we
persion equatiofi:* present the results for both weak and strong scattering.

1/ |Rle |2 .
7= 3| 2sinkgp) TO€) 64

1. Single reflection and transmission coefficients

1
cokpb= —cogkb+ 67). (65

|T| In order to determine single reflection and transmission

) ) _ coefficients, one needs to solve the single scattering problem
Here 67 is the phase angle of the single scatterer transmisphjch is much easier to deal with than the multiple scattering

sion coefficient. Note that the fact~ 6+ /2 and|T?|  problem. The wave equation for a single scattdeton) &
=1-|R[*~1 have been used in deriving E64). The  fynction of strength— U, is

asymptotic result given by E@64) is consistent with those
derived by Hodges and Woodhotand Pierre. However, d?w(x)
the simple asymptotic solution by E(p4) and those in ref- dx®

erences 5 and 12 become singular and fail near the edges of o e
the passband, i.e.|kd+ 6r— [(2m—1)/2] w|>O0(€?), Consider a plane wavée'™s*, incident on the scatterer at the

+k2w(x) + Up8(x)w(x)=0. (67)

while Eq. (63) remains finite and valid. origin. We may express the solution in terms of reflected and
It is also interesting to note from E¢63) that the local-  ransmitted waves as follows:
ization factor is a periodic function of the dimensionless Aeks*+ RAe ks x<(,

wave numberkgb. This simple expression clearly exhibits wW(X)= TAdS  x=0
the characteristics of band structure observed in quasi- ' e
periodic disordered systefis. The localization factor whereR and T are the single reflection and transmission
reaches its local maxima coefficients, respectively.

(68)
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10 11 12 13 14 15 16

FIG. 2. Comparisons of the present asymptotic soluti@osid) with those
of the first order approximatiofdashedl at the limit of weak scattering for

2 L L L L L L L L L
20 21 22 23 24 25 26 27 28 28 30

(b)

FIG. 3. Comparisons of the present asymptotic solutjsn$id curves ina)
and(b)] with Hodge's resulftthe first order resultgiven by Eq.(45) [dashed

elastic flexural waves propagating along a flat plate with randomly distrib-curve in (b)] at the limit of strong scattering for elastic flexural waves
uted ribs. Each rib is a rectangular beam with dimension specified by th@ropagating along a flat plate with randomly distributed ribs. Each rib is a
width t=0.05 (m) and the heighti=0.08 (m). The average separation of rectangular beam with dimension specified by the widtl).05(m) and the

two adjacent ribs ib=1 (m). (&) The phase density functions calculated at heightd=0.25 (m). The average separation of two adjacent rib®ss1

the dimensionless flexural wave numbigb=10. (b) The localization fac-  (m). (a) The phase density functions calculated at the dimensionless flexural
tors or the averaged decay rates are calculated at the frequency range, ¥@ve numbeikso=30. (b) The localization factors or the averaged decay

<kgb=30.

Note that the wave functiony(x), must be continuous

across the scatterer a0, that is
A+RA=TA, (69)

but its first derivative,w’(x), is not continuous across
=0. Integrating Eq(67) over the interval[ — ¢, €], and let-
ting e—0, we obtain

dw(0t) _dw(0")

ax ax +Ugw(0)=0. (70
Substituting Eq(68) into the above yields
Aik(T—(1-R))+U,AT=0. (72
Solving Eqgs.(69) and(71) for R and T, we obtain
2
2
Re—— 4 (72
4+q9®>  4+¢?
T= 2 73
- ma ( )

whereq=Ug,/ks. The phase angles & andT can be found
from the last two equations as
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rates are calculated at the frequency ranges R® < 30.

w
01': QR_ —

> sinfg= (74)

2
Jera

2. Weak scattering

In the case of weak scattering<1, Eqs.(72) and(74)
are simplified as

IR|—q/2, 6g— m/2+q/2. (75)

The phase density function follows from Eq28) and (75)
as

d + ﬂcos{2¢>— a/2)

p(B)=A—Au|5+5

2
+ %sin2(2¢>— qIZ)) +0(u?

2
=A—A,u,(qcosz¢+ %co§¢sin2¢ +0(u*, (76
Yang and D. M. Photiadis: One-dimensional wave localization 757



which yields the same result derived by Borldhtihe con- 0.45

stantA is determined by the normalization conditioh?),
that is, o
1+ 3uq '
A:TZ+O(M4). (77) 0.35 | q
The localization factor then follows from Eq83) and (76) .
as '
2 2
q . q 1 0.25
Y= Z(l—MSIHCIHO(M‘l): i Zqu"' O(u"),
(79 .
which reproduces the first two terms in E85) of Borland’s (@) * v ' ot 05 ; v ’
paper® :
3. Strong scattering 7k
In the limit of strong scattering and high frequencies, o f
g>1, orUgh>knb>1, we have .
|T|—2/q, 6g—m—20. (79 f
The phase density function follows from Ed40) and(79) st
as 2k
] tafig? +1/ il ij
pld)=—+—\5 q ¢—arctafg°cog ¢+1/q)] Lol
+0(u?), (80) ©r
The localization factor then follows from EQSZ) and (80) FIG. 4. The weak scattering results for elastic flexural waves propagating
as along a flat plate with quasi-periodically distributed ribs. Each rib is a rect-
angular beam with dimension specified by the witi#h0.05 (m) and the
- 2_9y_2In2+ ﬁ w2 Z_ E . heightd=0.25 (m). The average separation of two adjacent rib®€isl
Y= n(q ) n 7)_a0\2 (m). The maximum deviation from the average spacings0.04 (m). (a)

The phase density functions calculated at the dimensionless flexural wave
numberksb=20, where the solid curve is the present solution and the

2
X Incos’-(qb—l/q)dqb— ﬁf arctaqucos{d) dashed curve is the first order resulb) The localization factor or the
) — 72 averaged decay rate is calculated at the frequency rangek§6< 30.

+1/9))Incog(p—1/q)d ¢+ O(u?q?). (81)
k ) .
gw:4wps m g= \/Eelfrngw, g'= \/§e|317/4k§goc'
S

(84)

B. Irregularly spaced ribs along a flat plate

Consider the examples of elastic flexural waves propa- , . e
gating along a flat plate with randomly or quasi-periodically ~ Zm= ~1psAw,  Z;=—lpd o, (89
distributed ribs. For simplicity, we consider the cases Wherg,hereA is the area of the rib’s cross section drﬁélf is the

the propagation direction is normal to the ribs. The scatteringnomem of inertia about the line that the rib is attached to.
problem of a single rib has been given by many authors with=q, 5tx ¢ rectangular rib, we have

various approachés:* The well known results for the
single reflection and transmission coefficients, given by |gff: 1td3+ Lt3d. (86)

Photiadis'* may be written as .
The weak scattering case corresponds to the frequency re-

Zm0os k§Z|9w gion, kd<1 andkgb>1, while the strong scattering case

R=— 1+Zuyg  1-7,g" ' (82) corresponds to the frequency regidgd>1, whereb is the
average spacing and is the height of the rib. The phase
ZmOs kgzlgw density function and the localization factor may be calcu-
T=1 (83 lated by substituting Eqg82) and (83) into Egs.(28), (33),

1+Zyg 1-7,9"° .

(40), (42), (62) and (63). The results for the chains of ran-
whereZ,, and Z, are, respectively, the force and momentdomly distributed ribs are displayed in Fig@2 and(b) for
input impedances of the line scatterer apds the line ad- weak scattering, and in Fig(& and(b) for strong scattering,
mittance of the plate. In the absence of fluid loading, thesevhere the solid curves are the present asymptotic solutions
quantities are straightforward to obtain given by Egs.(28), (33) (40), and (42), and the dashed
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curves are the first order results, i.e., the results based on tlsee from the present analysis, the assumption of a uniform
assumption of the uniform phase density function. It is cleaphase density function provides a good approximation to a
to see from the comparisons that the uniform phase densityhain of completely randomly distributed scatterers, but it
function provides a good approximation for a chain of ran-becomes singular and fails near the edges of the passbands
domly distributed ribs in the limits of both weak and strongfor a chain of quasi-periodically distributed scatterers.
scattering.
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Torsional waves in lossy cylinders

J. M. Carcione® and G. Seriani®

Osservatorio Geofisico Sperimentale, P.O. Box 2011 Opicina, 34016 Trieste, Italy
(Received 17 April 1997; revised 3 September 1997; accepted 10 October 1997

The pure shear problem is one of relative mathematical simplicity and includes the essential physics
common to more complicated cases, where multiple and coupled deformations occur. In this sense,
the analysis of torsional waves serves as a pilot problem for investigating the influence of anisotropy
and/or anelasticity on solution behavior. We obtain the kinematic and dynamic properties of
torsional axially symmetric harmonic waves propagating in an infinitely long circular cylinder. The
medium is transversely isotropic and dissipative, with its symmetry axis coincident with the axial
axis of the cylinder. For an elastic cylinder each mode has a cutoff frequency and below that
frequency there is no propagation. For tubes made of quartz and aluminum Lucite, we found that the
existence of the cutoff frequencies depend on the degree of anisotropic attenuation, i.e., if the axial
quality factor is greater than the transverse quality factor, the modes propagate at all frequencies. In
contrast to the elastic case, the Poynting vector and the energy velocity have a component along the
radial direction, whose values depend on the transverse attenuation. The presence of intrinsic
attenuation confines the energy near thlastio cutoff frequencies while the radial distribution of

the energy is governed by the geometrical features of the cylinderl9€8 Acoustical Society of
America.[S0001-49688)02002-3

PACS numbers: 43.20.Jr, 43.20.K¥EG

INTRODUCTION In absence of body forces, the equations describing the

C ._motion of torsional viscoelastic waves are
Laboratory measurements of wave propagation in cylin-

drical samples provide a method for estimating the elastic )
and anelastic properties of rocks and metals. For instance, PUe=0rTor+ 92002 = Tt 1)
intrinsic attenuation can be obtained from measurements in

cylindrical bars(Kolsky, 1953; White, 1965; Blair, 1990; : Uy

Tang, 1992 Moreover, analysis of wave propagation O or = Pe6* 5rU¢—T, 2
through hollow cylinders and tubes has many engineering

applications(Soldatos, 1994 ranging from nondestructive O pr= bast XTI (3)

evaluation of oil and gas pipelines, acoustic telemetry

(Drumheller, 1998to attenuation of waves inside rigid pipes Whereu, is the displacement component,, and o, are

containing acoustic linerGreenspon and Singer, 199351 the stress componentg,is the density, and,, and g are

the exploration industry, the interest resides in the propagaiime-dependentrelaxation functions. The symbbldenotes

tion of pu|ses through drill Strings, since these pu|ses aréime COﬂVOlUtiOﬂ,(? spatial differentiation, and a dot above a

used as pilot signals for the data processing of seismogramygriable time differentiation.

generated by the roller cone fRector and Hardage, 1992 Since the torsional waves are decoupled from the quasi-
In this work, we compute the phase and energy velocicompressional and quasi-shear motions, they can be de-

ties of torsional oscillations propagating in a lossy aniso-scribed, as in the isotropic case, by a potential function

tropic hollow cylinder. The theory is a generalization of pre- U,=—9,¢ @)

vious works(Mirsky, 1965a, b; Armenakas and Reitz, 1973; 4 ree

Carcione and Seriani, 199&here a purely elastic cylinder Substituting the stresses into the conservation equéfipn

was assumed. and using Eq(4), we obtain the equation of motion,

. . 1
I. THE GOVERNING EQUATIONS PE=tagt 022+ ee*| I+ ﬂr¢> : 5

The problem is solved in cylindrical coordinates¢,z)
and an axially symmetric hollow cylinder of interior and |I. THE SOLUTION
exterior radiia andb is assumed. This implies that the sym-
metry axis of the medium coincides with the axial axis of the ~ The time-harmonic solution has the form
cylinder (z axis). In this case, the wave field does not depend

on the azimuthal variable. ¢=F(r.z)expeot), ©

wherew is the angular frequency and- —1. Substitution
JElectronic mail: jcarcione@ogs.trieste. it of Eq. (6) into Eq.(5) gives the generalized Helmholtz equa-
PElectronic mail: gseriani@ogs.trieste.it tion

760  J. Acoust. Soc. Am. 103 (2), February 1998 0001-4966/98/103(2)/760/7/$10.00 © 1998 Acoustical Society of America 760



1 w2 lll. PHYSICAL VELOCITIES AND DISSIPATION
E ar(r &rF)‘F‘?zzF_"W F=0, (7) FACTORS
where The location of a pulse traveling in the axial direction
requires the explicit calculation of the energy velocity, since
B /% ® the concept of group velocity loses its physical meaning. The
~ Vpes presence of attenuation considerably distorts the modulation

envelope of the pulsée.g., Carcione, 1994 Besides the
presence of intrinsic attenuation, the energy velocity displays

Pas=7( ¢44)’ Pes=-7( %6) (9) local information not contained in the group velodigee the
discussion in Simmonst al, 1992.

and

are the complex stiffnesses, with the operatodenoting the
time Fourier transform. Moreover,
The phase velocity and attenuation factor versus fre-
V= /% (10) quency corresponding to tjemode are
p

A. Phase velocity and attenuation factor

is the complex body wave velocity along the symmetry axis  Cp(w)= Re(7) and a(w)=—1Im(y), (18
of the medium. Y
The general solution for time-harmonic waves along thewhere
positive z direction is 2 K2 |12
B(r.2,t;y,0) =[Agdo(kr) +BoYo(kr)] Y(w):c_p_‘“:p""(v%w)_ ﬁz(w)> ! (19
xexq uot—1vy2)], (1)  with p.v. denoting the principal value and Im the imaginary

whereJ, andY, are Bessel functions of the first and secondpart'_l_h lculati f the oh locit d at fi
kinds, respectively, ané, and B, are arbitrary constants. € ca clu a Itcr)1n' 0 tetp'ar?t(fa ve 03' yS.an attenuation
The radial and vertical wave numbéesand y are related by Versus wavelength Is not straightforward. since

2

R y(w)]’

— - . =G! f | solution i
Application of the boundary conditions at the inner and outer” G~*(\) and a formal solution is

surfaces of the cylinder,

2 — —
@] - y2>_ 12 M©)=G(w)= (20

cp(x)zz)‘—wefl(x) and a=Im{»}[G XV} (2D

ou(r=a)=0 ando,(r=b)=0, (13
imply However, relation(20) is, in general, not invertible. The
most simple procedure is to plot the pdicg(w),\(w)] and
AoJa(ka) +BoYa(ka) =0, (14 [a(w)Mw)]

where the following properties were usediJo(kr)
=—kJy(kr) and @, —r 19,)Jo(kr)=k2J,(kr). Making _ _ .
zero the determinant of the linear system gives the period or ~ Calculation of the energy velocity and quality factor re-

B. Energy velocity and quality factor

dispersion equation quires energy considerations. The Umov—Poynting theorem,
or energy balance equation, for time-harmonic fields in
Jo(ka)Ya(kb) —Jo(kb)Yo(ka)=0. (16) anisotropic-viscoelastic medigCarcione and Cavallini,
Equation(16) is identical to the purely elastic period disper- 1993 is
sion, where the root&y ,ks,... K;,... arereal. Abramowitz div P—210((€es) —(€,)) + w(eg) =0, (22)

and Stegur(1964, p. 374 give an approximate formula for ) ) .
the rootq;=k;a that can be used fdy/a<3. Here, we com- whereP is the complex Umov—Poynting vector defined as
pute the exact roots by using the Mathematica software. P=—13.0*, (23
The velocity of the lowest torsional mode is not appro-
priately obtained from Eq(16). This mode corresponds to
k=0 and the displacement to a rotation of each transverse (e,)=2puT-U* (24)
section of the cylinder as a whole about its cerfsmre, for
instance, Christensef1982, p. 47]. The dispersion of this
mode is caused by the intrinsic attenuation along the radial  (e,)=Re(#) and (egq)=2 Im(¥) (25)
direction. The phase velocity is

with X the stress tensor,
is the time-average kinetic energy density,

are the time-average stored and dissipated energy densities,
c,=[Re(V " H] ™, (17)  respectively, with

where Re denotes the real part. #=1iST.p.s* (26)
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the complex energy densit{s the strain vector, ang the

cylindrical systems and has a component in the radial direc-

complex stiffness matrix. The asterisk used as superscrigion. This component vanishes in the purely elastic case,

denotes complex conjugation, the symbpbrdinary matrix

multiplication, and the superscript, transpose.
The Poynting vector is

P=- %(0'<pzéz+ a-qorél’)uz . (27)

Substituting the potentidll1) into Eq.(4) and using Eq(14)
gives

u,=kAgR; exp(—az)exd tw(t—2/cy)], (28
where
Jo(ka) .
Ri(kr)zJi(kr)—in(kr), i=1,2. (29

Note thatR,(ka) =0 and by virtue of the dispersion equation

since Impgg) =0. At r=a andr=b, R, vanishes and using
Eq. (10),

20 ReyWV?)
Ve W+ [y Re(V?)

The quality factor can be obtained as the ratio of twice the
stored energy to the dissipated energy, giving

_ 2(es)  Re(pa)|yI*+k* Re(Pes) (Rp/Ry)?

(39

= = . (40
(e)  M(pad /Z+KE Im(peg) (R /RZ" 40
At r=a andr=b Eq. (40) reduces to
_ Re(p4a)
B IM(pgg)’ 4D

(16), Ry(kb)=0. The stress components are given by Eqgsthat is, the quality factor of the shear body wave traveling

(2) and(3),

0 oz=~ tYKPaARy X — az)exd to(t—2/cy)],
30

Ogr=— k?pesAoR, exp(— az)exy tw(t— zlcy)]. (3
Then,
P=30k?| Ag|*Ry(PasyR1&,~ tPek Ro& ) exp( — 2az).

(32)
From Eq.(26), the complex energy density is
“= #Pad Spzl >+ Pedl Sr?). (33
where
u‘P
S,z=dUu, and S, =du,— 3 (39

are the strain components. Using E&8) we obtain
2= K Aol?(Pad vI*RI+ peck®RO) exp( —2a2).  (39)
The kinetic energy density is simply

(€)= ipw’k?|Ag|°R; exp(—2az2). (36)

along the symmetry axis of the medium.

IV. EXAMPLES

We use a phenomenological model based on a viscoelas-
tic rheology. The theory assumes a single standard linear
solid element describing the anelastic deformations associ-
ated with the axial directiony(=1) and the radial direction
(v=2). We take

P4s=C4gM1, Pgs=CecM2, (42
where the complex moduli can be expressed as

VQ35,+1-1+iwQq,7
VQ3,+1+1+iwQq,7o

The quality factorQ, , associated with of each moduli, is
equal to the real part d¥l, divided by its imaginary part.

The curveQ, () has its peak abo=1/7y, and the value

of Q, at the peak i9q,. The high-frequency limit corre-

sponds to the elastic case with,— 1. The relaxation func-

tions associated with the complex stiffnesses atg,

M (w)= (43

In contrast to unbounded homogeneous and elastic media;, C44X1 and 6= Ceex2, Where

the average kinetic and potential energy densities are differ-

ent in elastic cylinders. This is shown in the Appendix.

The energy velocity, is the ratio of the average power

flow density ReP) to the mean energy densitye, + €s).
Then,

_ Re(P)
Ve e, T eq)

20[ Re( yP4s) REE,+ K IM(Pgg) R1R2E: ]

- e
PR+ /R Relpe) + KR Relpeg] . ")
Equation(37) becomes
20[Re(yP4s)€,+k IM(pge)(R2/Ry) € ] 39)

Vo= .
¢ pw’+|y]* Re(Pag) +k* Re(Pee) (Ry/Ry)?]
Note that the dependence on the radial variablis con-

tained inR, /R, . While the energy velocity is constant for a

plane wave in unbounded media, it is a functionrofor
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A0

Xy(t){w—(W—l)exp(—tlf(”)) H(t), (44)
+ +

with H(t) the Heaviside function, and

r
T@:QO [VQ3,+1=1]. (45)
Ov
We introduce the anisotropic loss parameter
Qo1
=—_— (46)
7 Quz
and assume thatyp=1.28., where B,.=pB(w—®)
= \C44/Cee:

We consider two materialsee Thomsen, 1986quartz,
with ¢4,=53.21 GPa,p=2.65 gricmi, B.=1.21 andQq,
=100; and aluminum-Lucite composite with,=3.4 GPa,
p=1.86 gricnd, B..=0.53 andQy;= 10. The calculations are
carried out for samples havirg=1 cm andb=2 cm. If g;
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FIG. 1. Quartz: normalized phase velocity and attenuation versus frequency f (MHz)

corresponding to the first and third propagation mo@estinuous and bro-
ken lines, respectively The normalization constant is the axial elastic ve-
locity c=(c44/p)*2 The thin broken lines are the respective elastic phase

. FIG. 2. Quartz: normalized displacement field for mode 3 as a function of
velocities.

frequency and radial distance. The upper picture corresponds @ and
the lower picture tz=0.1 m. The normalization constant is the displace-
=k;a, the first three roots of the dispersion equatihf) are ~ ment atf=1MHz, r=a andz=0.
g,=3.4069,9,=6.4278, andq;=9.5228. These roots are

independent of the material properties.
A. Quartz

Normalized phase velocity and attenuation versus fre-
qguency corresponding to the first and third propagation
modes are represented in Fig. (@ontinuous and broken
lines, respectively The thin broken lines are the respective
elastic phase velocities, that tend to infinity at the cutoff
frequenciesf,=201 kHz andf.=561kHz [y=0 in Eqg.
(12)]. There are no cutoff frequencies in the viscoelastic
case, although the attenuations beléware so high that
wave propagation is precluded in practice.

Figure 2 represents the normalized displacement field
(32) for mode 3 as a function of frequency and radial dis-
tance(from r =a to r=b). The upper picture corresponds to
z=0 and the lower picture ta=0.1 m. In this case, the
strong attenuation below thelastig cutoff frequency pre-
vents any particle motion. Moreover, the viscoelasticity
causes the dissipation at high frequencies. .

The modulus of the normalized energy velocity, versus Vel/C 0.75
frequency and radial distance, is represented in Fig. 3. The 0{’%
surface practically shows the axial component of the energy
velocity vector, since the radial component is very small.
The energy velocity vanishes where there is no particle mo-
tion (see Fig. 2 These minima in the energy velocity are not
due to the elasticity but to the geometrical features of the

Cylmder' As can be seen, the energy VeIOCIty dlsplays IOCaII:IG. 3. Quartz: modulus of the normalized energy velocity, versus fre-

information not ContaiHEd in the group velocity. _|t can be guency and radial distance. The normalization constant is the axial elastic
shown that the elastic energy velocity, when defined as theelocity c=(c/p)Y2
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mode 1

4

FIG. 4. Quartz: distribution of the energy along the radial distance, as a function of frequency. The left pictures correspond to the mean energy density
(e, + €5 and the right pictures are the dissipated energy dengitigs The normalization constar, is the total energy at=1 MHz, r=a andz=0.

ratio of the time average of the power per cross section and Figure 4 shows the distribution of the energy along the
the time average of the total energy per unit length of cylin-radial distance, as a function of frequency. The left pictures
der, equals the group velocitye.g., Achenbach, 1973, pp. correspond to the mean energy density+ ) and the right
214). pictures are the dissipated energy densitiep. The first
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FIG. 6. Aluminum Lucite: phase velocity and attenuation curves versus
frequency, corresponding to the first and third propagation m@zeginu-

ous and broken lines, respectivelirhe normalization constant is the axial
elastic velocityc=(c,,/p) Y The thin broken lines are the respective elas-
FIG. 5. Quartz: quality factors versus frequency and radial distance. tic phase velocities.
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APPENDIX: ENERGY BALANCE

In unbounded media diR= —2a-P (Carcione and Cav-
allini, 1993. If there are no losses, ER2) implies that the
average kinetic energy equals the average potential energy.
An analysis based on E(R2) shows that this is not the case
for cylinders. In order to verify the energy balance E2R)
we explicitly calculate the divergence of the Poynting vector
(32). This can be written as

P=P.&+P,,, (A1)

where

i
Pr=pRiR; exp(—2a2), p,=-— > wk3|Aq|?pes
(A2)

.

O
\! \ \\\\
W

W\
RN
{Q‘}* and

P,=p, R} exp—2az), p,=3 wk?Aol?ypas. (A3)

We have that

P
div P=9,P,+ —+4,P,. (A4)
FIG. 7. Aluminum Lucite: quality factors versus frequency and radial dis- r
tance.

For computing the radial derivatives we use the following
mode is approximately 200 times stronger than the thirdecurrence relation for the cylinder functiongz), wherez
mode, and both modes carry more energy at the high freis complex andv any number(not necessarily an integer
guencies. This happens at the onset of the perturbation (

=0), since forz#0 the high frequencies are attenuated by 20 =v?,— 27, 1= —vE+27, . (A5)
the viscoelastic effects and the motion is confined near the
(elastig cutoff frequenciesFig. 2). We obtain

Finally, the quality factors are represented in Fig. 5.
They have a minimum value ai,, the location of the re-

1
laxation peak. The location of the minima along the radial ~ 4,P,=pk| RZ—R5— = R;R, |exp(—2az). (AB)
direction coincide with the positions of zero particle motion r
(see Fig. 2
Then,

It is important to distinguish between two attenuation
effects. One is of viscoelastic nature, that is reflected in the
shape of the quality factors surface as a function of fre-  div P=[(kp:—2ap,)Ri—kpRilexp —2az). (A7)
guency. The other is geometrical effect that produce the
minima along the radial direction and causes the strong afNote that in the elastic case the kinetic energy is not equal to
tenuation below the elastic cutoff frequencisse Fig. L the potential energyin averagg, since

B. Aluminum Lucite (e)—(€g)=— % k*|Aq|%Cee( RZ—R3). (A8)

In contrast to quartz, this material hgs<1, and there- ] ] ) ] )
fore, the attenuation is higher along the axial direction. Dug1oWeVer, using properties of the cylinder functions, it can be
to this fact, the physics of wave propagation is different.Shown that
Figure 6 shows the phase velocity and attenuation curves
versus frequency. In this case, there is a cutoff frequency
even in the presence of anelasticity. The displacements en-
ergy densities and energy velocity surfaces are similar to
those of quartz. The quality factors are represented in Fig. 7Then, integration of Eq(A8) over the cross section of the
They have a minimum value ab,, the location of the re- cylinder is zero sinc&,(ka)=0 andR,(kb)=0. This is in
laxation peak, and, unlike quartz, the surfaces presentsgreement with the result obtained by Achenbél®v73, pp.
maxima along the radial direction. 214).

f [R2(kr)—R3(kr)rdr =krRy(kr)Ry(kr), (A9)
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On the velocities of localized vibration modes in immersed
solid wedges

Victor V. Krylov
Centre for Research into the Built Environment, The Nottingham Trent University, Burton Street,
Nottingham NG1 4BU, United Kingdom
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The approximate theory of localized elastic waves in immersed solid wedges earlier developed for
wedges with small values of the apex angle V. Krylov, Proc. IEEE Ultrason. Symp., Cat94,

CHO 793-7961994] has predicted that the effect of water loading results in velocity decrease for
wedge modes travelling in the subsonic regime of wave propagation. The results of this theory, in
particular the absolute values of wedge wave velocity calculated for slender Plexiglas wedges, agree
well with the corresponding experiments. The present study demonstrates that for relative values of
wedge wave velocity, as compared with those for wedges in vacuum, this theory provides good
quantitative agreement with the experiments on Plexiglas samples also for large values of the apex
angle. In addition to this, a generalization of the theory is undertaken to describe the effect of
heavier wedge material and a supersonic regime of wave propagation. The corresponding results
show good agreement with the existing velocity measurements in immersed brass wedd€€8 ©
Acoustical Society of AmerichS0001-496628)03102-4

PACS numbers: 43.20.JANN]

INTRODUCTION material and a supersonic regime of wave propagation ex-

In a recently published work, De Bilhcarried out mea- plains the results of the velocity measurements for immersed
brass wedges.

surements of the velocities of localized antisymmetric modes
propagating along tips of elastic solid wedges immersed in

water. The velocities of such moddalso called wedge

acoustic waves were measured on Plexiglas and brassl. THEORY

samples with the apex angle varying from 20 to 90 degrees. ) ,

For Plexiglas samples, for which a subsonic regime of wedge e remind the reader that the approximate theory of
wave propagation takes place, the experiments showed a n_[9_callzed e'lastlc waves in immersed ;olld Wedggs developed
ticeable decrease in velocities due to water loading. As waf! Ref- 2 is based on the geometrical acoustics approach
mentioned in Ref. 1, this was in qualitative agreement withCOnSidering a slender wedge as a plate with a local variable
the predictions of the approximate analytical theory earliefhicknessd=x®, where® is the wedge apex angle ards

developed by the present author for slender immersef® distance from the wedge tip measured in the middle
wedges in subsonic regime of wave propagafitfowever, pIane(F|g. 1)._ The. velqcmes: of the chahzgd wedge mod_es
no direct comparison with the theory was given in Ref. 1,propagat|ng iny direction are determined in the geometrical

probably because it was not expected from the theory tGCOUSUCS approximation as solutions  of the Bohr—
provide accurate results for large values of the wedge apexCmmerfeld type equation

angle. Note in this connection that measurements of the ab- X,

solute values of wedge wave velocities carried out by fo [k2(x)— B2]Y2dx=mn, 6N

Chamuel on Plexiglas wedges with apex angles varying

from about 8 to 13 degrees have shown excellent agreemeWhereﬁzwlc is the yet unknown wave number of a wedge
with the theory? Latest finite element calculations by mode k(x) is a current local wave number of a flexural wave
Hladky-Hennionet al.” carried out for Plexiglas wedges with j, 4 plate of variable thickness= 1,2 3, ... is the mode
angles in the range from 20 to 90 degrees demonstrated go%mber, and, is the so called ray turning point being de-
quantitative agreement with the experimehtdowever, in termined from the equatiok?(x) — 82=0.

the case of brass wedges, which provide both subsonic and g, example, in the case of wedge in vaculkfx)
supersonic propagation regimes, only subsonic regime has 1Y% @x) 12 x,=2\3k,/082, and k,=wlc
been calculated. P ' P 2,2 gis theps,o

. wherew is circular frequencye,=2c(1—c{/c; )Y
In what follows we demonstrate the) for relative val-  5jjeq plate wave velocity, andc, are propagation veloci-

ues of wedge wave velocity, as compared with those fofjag of |ongitudinal and shear acoustic waves in plate mate-
wedges in vacuum, the approximate analytical theory devels Then, taking the integral in Eql) and solving the re-

oped for slender immersed wed@gsovides good quantita- sulting algebraic equation vyields the extremely simple

tive agreement with the experiments on Plexiglas Sampleénalytical expression for wedge wave velocities:
also for large values of the apex angle; dhfla generaliza-

tion of this theory to describe the effect of heavier wedge  c=c,n®/,3. (2
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For kd<1 typical for thin plates one can also neglect the
term pgkd in Eq. (4), keeping in mind thap; /ps~1. Then,
taking into account that for a plate of variable thickness rep-
resenting a wedgd=d(x)=x0 and solving(4) versusk,
one obtains the following expression for the local flexural
wave numbek(x) describing the effect of liquid loading:

\/63 1 \/E w 2/5
T e O

Substituting(5) into (1) and introducing the nondimensional
notationsn=c/c; and z=k,d=x0 w/c, one can derive the

k(x)= ®

FIG. 1. Antisymmetric wedge waves. following equation versus;:2
. . 0 A% A% 1 vz
Expression(2) agrees well with the other theorfed® and f "1 dz=mne (6)
with the experimental resulfsNote that, although, strictly 0 55 52 ’

speaking, the geometrical acoustics approach is not valid for h
the lowest order wedge mode=1),% in practice it provides where
quite accurate resul_ts for wedge_ wave veIociti_es in this case A=6Y3(p; /ps)l/5(1_ct2/cl2)*1/5
as well. The analytical expressions for amplitude distribu-
tipns of wedge modes are rather cumbersorhand are not =65(p; Ip) Y[ 2(1— o) ]2/ @
displayed here.

To calculate the velocities of wedge waves in a wedgds a nondimensional parameter dependent on the relation be-
imbedded in liquid one has to make use of the expression fdveen the mass densities of liquid and sojigd/ps [the
a plate wave local wave numbk(x) which takes into ac- Power of the mass density ratio 1/5 in Eq) corrects the
count the effect of liquid loading.The starting point to de- €arlier misprinted value of 2/5 in Ref] 2nd on the Poisson
rive k(x) for this case is the well known dispersion equationratio o. Eq. (6) can be easily solved numerically using any

for the lowest order flexural mode of a plate imbedded in@ppropriate algorithm, e.g., standard Mathcad package.
liquid: Note, however, that by change of variakde A>375, it

may be further simplified as

1 0t 1 o2 d? pf w? )
2k 6 e 22" b, ik d\/wz A3 f (x5 1)Y2dx=mn. ®)

() 0
whered is the plate thicknes&= w/c is the wave number of [The author’s attention to this way of simplification of Eq.
propagating flexural mode, is its phase velocityk,=w/c,  (6) has been drawn by A. N. Norrishfter numerical calcu-
andk,= w/c, are respectively the wave numbers of longitu- lation of the integral in Eq(8), one can easily derive the
dinal and shear acoustic waves in plate matefigland p; explicit analytical expression for wedge wave velocities:
are respectively the mass densities of solid andzliquid3 Note ._. A~52D 32 7)329 372, 9)
that, using the notation for flexural rigidi9 = (psc,/12)d",
one can easily transform E¢B) to the more familiar form  whereD = Jo(x~®3—1)2dx=2.102. According to Eq(9),
which is often used in the literature for flexural waves in thinthe dependence af on ® for immersed slender wedges is
plates faced to liquid at both sid&s!? In the absence of proportional to®%2 This agrees well with the empirical
liquid (p; =0) Eq.(3) reduces to the well known dispersion power law®*°2? established by Chamdeby matching the
relation for flexural waves in a thin plate in vacuum. numerical solution of Eq(6).

In further consideration it is convenient to distinguish In the case; /ps<1 typical for heavy solid materials in
two characteristic cases of the relation between the magsater and for any solids in gases, one can solve Bj.
densities of liquid and wedge materiaki; /ps~1 and approximately, to the first perturbation order verguysps,
pr Ips<1. seeking a solution fok in the form

For the case; /ps~1 typical for light solid materials in _

e : ) . k=K *+Ka, (10
water we limit our analysis by subsonic regime of wave
propagation k> w/c;). Moreover, for simplicity, we impose wherek, is the solution of Eq(3) for a plate in vacuum
even more severe restriction considering very slow propagatp;/ps=0) and K, is yet unknown small correction term
ing plate flexural modesk& w/c;). In such a case one can which takes into account the effect of liquid loading. Substi-
use the approximation of incompressible liquid, i.e., neglectuting (10) into (3) and retaining terms of only the first order
the w/c; term in (3), and the solution of Eq(3) versusw versusps/ps, one can derive the following approximate ex-
yields pression fork:
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k=ko 1+ 2p3d(k<°> C?) } - L e
Obviously, for p;/ps=0 Eq. (11) goes over to the well R
known expression for a wave numbgp, of a flexural plate 06 - ,/‘/ i
wave in vacuurk o, =[ V3wc, /(c\/ci—cZd)]¥2 . The sec- Swat ¢ o
ond term, proportional te;/ps, gives a small correction Cvac oL -
k(1) describing liquid loading. It is seen that this term be-
comes imaginary in supersonic regime of wave propagation, 02l —
when a local wave number of a plate wave in vacuum ex-
ceeds the wave number of sound in liquid. Note that(Ed) 0 ' ' . '
is not valid for very small values d. It also becomes in- 0 20 “© 60 80 100
valid for those values ofl for which the velocity of flexural O, degrees

wave is equal to the velocity of sound in liquid. In both these

cases the contribution of the second te.rm In ngare braCkeﬁG. 2. Theoretically calculated ratiq,,/cy, for Plexiglas wedges as a

of (11) is not small and the perturbation solution can NOfunction of the apex anglésolid curve; points indicate the corresponding

longer be applied. Regarding wedge waves, this means thatperimental results Ref. 1.

the above considered perturbation approach is not applicable

for wedges with very small apex anglésand for velocities  accurate® The most likely reason for such a good agree-

of wedge waves approaching the velocity of sound in liquid.ment is that, because of the presentation of the results in
To apply the Bohr—Sommerfeld type equation for calcu-terms of relative values of wedge wave velocity, as com-

lating wedge wave velocities in the case considered, onpared with wedges in vacuum, the corresponding systematic

should follow the well known way of generalization of geo- errors caused by the limits of applicability of thin plate

metrical acoustics for complex wave numb@rand substi- theory to plates of relatively high local thickness occurring

tute real part of Eq(11) into Eq.(1). Doing so and using the for large apex angle® are expected to be the same for

dz=mno,

nondimensional notations;=c/c; and z=k,d=x0 w/c,, immersed wedges and for wedges in vacuum. Therefore,
one can derive the following equation versys they might cancel each other.
112 The velocities for brass wedges in wates£8600
jBrzz ER 1+ﬂ 1 _i kg/m®, p;=1000 kg/mi, c;=1478 mis;c,=4350 m/s,c,
0o |z Ps z~/(B/z)—(ct2/cf2) 72 =2127 m/s,0=0.343; these yi(_eld§=1.9_86 were calcu-
lated in the process of numerical solution of Ed2). In
, doing so, we introduced a small artificial damping under
where B= V3ei/ Ve —ci. Note that the above described g are root in the second term @2)—to avoid singularity
geometrical acoustics approach also allows calculation of thﬁ/hen the value of local flexural wave velocity becomes
wedge wave energy loss factory2iue to the radiation of o451 1o the velocity of sound in liquid. The results are
sound into liquid, so that the wave number of,a_ttenuate%hown in Fig. 3 as the ratio, ./ c,sc between the velocities
W(_adge_ waves can be written in the form8"=B(1 4t ne first order wedge mode in immersed wedges and in the
+17)=(w/c)[1+iy]. However, calculation ofy is out of 56 wedges in vacuufsolid curve. Note that a small local
the scope of this paper devoted to wedge wave velocitieg inimum around © =47 degrees corresponding to the

only. damped singularity indicates the values of the apex angle
where the above theory is not accurate. It is not clear whether

Il. RESULTS

The results of numerical calculations of wedge wave | : | — T

velocities for Plexiglas wedges in water obtained according Leeet e st

to Egs.(6) or (9) (ps= 1180 kg/mi, p;=1000 kg/mi, c; sk . |

=1478 m/s,c,=2732 m/s,c;=1363 m/s,c=0.334; these

yields A=1.466 are shown in Fig. 2 for different apex - 06 -

angles. Following Ref. 1, they are presented as the rati  ‘wat

Cwat/ Cvac between the velocities of the first order localized — €vac L i

modes in immersed wedges and in the same wedges

vacuum(solid curve. Note that the slope of the theoretical 02k -

curve s/ Cyac displayed in Fig. 2 decreases as the wedge

angle increases. This reflects the fact that, according to Eq 0 ! I ! '

(2) and(9), the functionc,,q/Cy.c is proportional to®¥2 The 0 20 40 0 80 100

corresponding experimental restiltare displayed in the O, degrees

same picture. It is clearly seen that the agreement betwee ..

the theory and the experiment is remarkably good, althoug IG. 3. Theoretically calculated ratm,,/cy,. for brass wedges as a func-

for value_s of the Wed_ge apex anglg larger than 30 degrees thgn of the apex anglésolid curve; points indicate the corresponding ex-
geometrical acoustics theory is not expected to beerimental results Ref. 1.
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this small minimum is present in reality or it is just a se- N. Norris, for his idea of deriving the analytical expression
guence of limitation of the perturbational approach consid{9) for velocities of localized vibration modes propagating in
ered. The corresponding experimental resuttisplayed in  wedges made of light materials.

the same picture fluctuate significantly due to experimental

errors and do not clarify this question. Therefore, there is no

point on this stage to investigate it in more detail. Regarding

the average behavior of experimental points, it is fair to say

that the agreement between the theory and the experiment ihw. de Billy, “On the influence of loading on the velocity of guided acous-
Fig. 3 is good enough for wedge angles from 20 to 90 de- tic waves in linear elastic wedges,” J. Acoust. Soc. A0, 659662
grees used in the experiment. One can expect that the reasqﬁlgga' . , . ,

f h d for b d is th V. V. Krylov, “Propagation of wedge acoustic waves along wedges im-
or such a gao qgreement or ras_s wedges IS t_ e Same as WYqqged in water,” Proc IEEE Ultrasonics Symposium, Cannes, France,
the case of Plexiglas wedges. Making more definite conclu- cat. #4, CHO 793—7961994.

sions on the limits of applicability of the simple thin plate °J. R. Chamuel, “Flexural edge waves along free and immersed elastic
theory approximation for both these cases would require us- waveguides,” in Review of Progress in Quantitative Nondestructive

ina mor dvanced theori f plate flexural vibrations th tEvaluation,VoI. 16, edited by D. O. Thompson and D. E. Chimeffioc.
g more advance eories or plate fiexura ations tha 16th Symp. Quant. Nondestruct. Eval., 28 July—2 August 1996, Brun-

goes beyond the scope of this paper. swick, Maing (Plenum, New York, 1996 pp. 129-136.
4A.-C. Hladky-Hennion, P. Langlet, and M. de Billy, “Finite element
IIl. CONCLUSIONS analysis of the propagation of acoustic waves along waveguides immersed

in water,” J. Sound Vib200, 519-530(1997.
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.. . . . Phys. Acoust35, 176—180(1989.
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agreement with the existing experiments for both subsonic Phys.35, 137-140(1990.
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Temporal deconvolution of laser-generated longitudinal acoustic
waves for optical characterization and precise longitudinal
acoustic velocity evaluation
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The laser thermoelastic generation of ultrasound is a promising technique with many potential
applications, but it is also a complicated process with many physical phenomena involved. Contrary
to a conventional piezoelectric transducer generation, which is a surface phenomenon, a laser
generation can activate acoustic sources within the material by optical penetration of the excitation
wavelength, resulting in asynchronous wave arrivals at a given point. More generally, in the ideal
case of a nondispersive isotropic material, the laser-ultrasonics displacement signals result from
temporal convolutions between optical penetration, laser pulse duration, and laser spot extension
effects. In this paper, a deconvolution technique is presented that extracts the laser pulse duration
contribution from the experimental displacement signals. This deconvolution scheme applied to
one-dimensional experiments, in which the laser excitation is spread over a sufficiently large area on
the front side of the sample, allows the measurement of the optical absorption coefficient of the
material at the excitation wavelength and also a precise evaluation of its longitudinal acoustic
velocity. © 1998 Acoustical Society of Amerid&80001-496€08)04701-9

PACS numbers: 43.20.Ye, 43.20.Gp, 43.35[YEG

INTRODUCTION tens or even hundreds @im can be reached, giving rise to
huge longitudinal acoustic pulses. Thermal burying then be-
Because of its noncontact nature, the laser-ultrasonicsomes negligible compared to optical burying, which gov-
technique circumvents several important limitations of clas-erns completely the thermoelastic generation.
sical ultrasonics. But on the other hand, this technique, when  The temporal information present in the precursor gen-
used in the nondestructive thermoelastic regime, is not vergrated by optical burying has already been stuéte¥and
efficient: Contrary to a highly directional acoustic source likehas been shown to result from temporal convolutions be-
a piezoelectric transducer, for example, a laser-activategveen the spatially distributed thermal expansion fodie
thermoelastic source launches all types of acoustic waves irectly resulting from optical penetratipand the temporally
all the directions of the half-space, which dramatically re-and spatially distributed laser excitati¢ire., the pulse dura-
duces the efficiency of the generation in one given directiontion and the spot size, respectivel{ptical characterization
The ability of the material under study to bury thermal through the temporal analysis of the precursor is thus a com-
expansion sources has already been demonstrated to be a kgicated task, unless one can get rid of at least one of the two
factor for an improved efficiency of the laser ultrasoundconvolutions related to the laser excitation. A solution in this
generatiort2 Depending on the physical properties of the direction consists of focusing the laser beam so that the ex-
material, this burying phenomenon can result from opticakitation becomes spatially pointlike, but the risk of damaging
penetration? or thermal diffusior-® It gives rise to pulse- the sample obliges to use very low excitation energies and
shaped longitudinal acoustic arrivals on the rear side of théhe displacements are too weak to be measured. On the other
sample(the first of these pulses being called the precursor hand, extending the laser beam so that the irradiation can be
and it transforms a rather unfavorable longitudinal waveconsidered as uniformly distributed is a satisfactory alterna-
emissivity pattern into a highly directional one in the direc-tive: If the spot size-related convolution is still preséihis
tion normal to the impinged surfaée. even extremg this experimental configuration can easily be
Thermal burying is usually a slow process compared taepresented by a simple analytical one-dimensiddab)
characteristic acoustic durations: the thermal diffusion lengtimodel in which the spot size-related convolution still exists
during an observation time of a fews is only a fewum.  but is no more apparent. In the following, we will develop
Consequently, this process as the cause for larger precursdtés model, show how we can get rid of the last laser
can be observed only on materials that are highly thermallexcitation-related convolution that is still appardne., the
conducting and highly optically opaque to the excitationpulse duratiofy and present a technique of exploitation of
wavelength. Metals belong to this category, and they havéhe temporal shape of the convolution-free precursor for the
been at the center of the first theoretical wotkRs’ On the  quantitative evaluation of the optical penetration depthof
other hand, optical burying is an instantaneous process anthe optical absorption coefficignof the material at the ex-
depending on the matching of the excitation wavelength taitation wavelength. Moreover, we will show that it is pos-
the optical properties of the material, optical penetrations okible, with the help of the convolution-free normal displace-
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ment signal, to evaluate the longitudinal acoustic velocity ofand the classical two boundary conditions:

the material with a precision of a few %o, i.e., a precision

attainable with classical ultrasonics but which to our knowl- ~ 9zz=0 atz=0 andz=L ®)
edge has not yet been reached with laser-ultrasonics beca
of convolution-related problems and also because of th
complexity of analyzing laser-ultrasonics signals in “non-1-
D” configurations. Finally, we will validate our characteriza-
tion schemes by performing two experiments with two dif-
ferent excitation duration@ “short” one and a “long” ong U,(z,5)=F(s)xU%z,5s) (6)
on a material with well-known optical properties.

%ezz being the £,z) component of the stress tensor dnthe
ickness of the plafe allows the determination of the ana-

lytical expression of the normal displacement fielgz,t).2

In the Laplace domain, this analytical expression is

with

1/Bv

A. The analytical 1-D model

" e Pt cosliszv)—coshs(L—z)/v)

Let us consider an infinite orthotropic plate, cut in such i
sinh(sL/v)

a way that the normal to its surfaces is one of its principal
axes, and impinged on its front side by a uniformly distrib- Bu

uted laser pulse. In this configuration, the displacement vec- + Y e P2
tor is normal to the surfaces, and the temperature elevation

and the mechanical displacement fields are functions of onlgng

one space variable, the depth in the plate. With the assump-

tion of negligible thermal diffusion, the temperature eleva- xlo

tion field A6 reproduces the optical absorption space—time “0:,)_(:')' ®
profile within the plate; its analytical expression is

)

8 t In relations(6)—(8), s is the Laplace variabld/,(z,s) and
Ab(z,t)= ro e*ﬁzf f(r)dr. (1) F(s) are the I'_aplace transforms of(z,t) andf('t), respec-

pCp 0 tively, andug is a parameter group that has units of distance.
Relation (6) shows that when the laser pulse becomes infi-
nitely short, f(t) becomes the Dirac function centeredtat
=0, F(s) is equal to 1, andJ,(z,s) is equal to the function

In this expressionz is the depth in the plate, artdhe time.
B, p, and C, are physical properties of the plate, respec-

tively, its optical absorption coefficient at the excitation ~; f_ ; MO is th |
wavelength, its density, and its specific hdgtis the energy Uz(z,5) defined in(7). Consequentiy);(z,s) is the Laplace

per surface unit “entering” the plate, which is equal to (1 transform of the normal displacement f|eldzj_(z,t_) that
—R)I;, wherel, is the incident energy per surface unit emit- would be g_enerated in the platg if the laser excitation, |n§tead
ted by the excitation laser arRithe reflection coefficient of ©f Presenting a temporal profilE(t) spread over a certain
the impinged front side at the excitation wavelength. Finally,duration, was strictly instantaneous.
the functionf(t) is the temporal profile of the laser pulse;
this function is normalized through the relation:

» B. Procedure to extract the pulse duration-related
f f(t)dt=1. (2)  convolution from the normal displacement curve
0

_ According to relation(6), u,(z,t), which is the quantity
The componenti, normal to the surfaces of the mechanical measured experimentalig= L for a rear-side detectionap-
tic wave propagation equation containing a thermal expantemporal profilef(t) of the laser pulse and the normal dis-
sion source term; this equation is placemenu?(z,t) that would be observed at the same point
1 4%, Ju, J(A6) 5 if the laser excitation was instantaneous:
V2?2 aF X Tz - ®

u,(z,t)=f(t)*ud(z,1). (9)

In this equationy is the longitudinal acoustic velocity of the i

plate in thez direction, andy indicates an “apparent” ther- 1NN, a very simple way to cancel out the laser pulse dura-
mal expansion coefficient of the plate, related to its rigidityfuon_effects in the experlmental signal consists in deconvolv-
and thermal expansion tensofg=(3\+2u)al(A+2u) ing it as follows_. The experimental temporal profilé) of _

for the particular case of an isotropic material, whe@nd . the laser pulse is recorded at the same time as the experimen-

are the Lameoefficients andr the linear thermal expansion (@l normal displacement curug(z,t). As these two experi-
coefficien]. Equation(3), plus the classical two initial con- mental signals are recorded over the same duration with the

ditions: same sampling rate, a numerical Laplace transformation al-
gorithm [based on the fast Fourier transforfRFT) algo-
B au; _ rithm] allows the evaluation of the Laplace transforf(s)
u;=0 and-Z==0 att=0 @ andU,(z,s) over the same sés,} of the Laplace variable. It
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is then possible to evaluate the Laplace transfdﬁﬁ@z,s)
over this sef{s,} with the help of relatior(6), and to deduce
the convolution-free normal displacement cuugéz,t) with

the help of a numerical inverse Laplace transformation algo-

rithm. That way, the curve?(z,t) is evaluated over exactly
the same time sequence as the initial cunyéz,t). This

C. Evaluation of the longitudinal acoustic velocity
and of the optical absorption coefficient from
the convolution-free normal displacement curve

The analytical expression mt‘Z’(z,t) can be determined
by analytical inverse Laplace transformation ldf(z,s),8
this expression is

deconvolution scheme has the advantage of involving the

experimental temporal profilé(t), so that no assumption u‘z’(z,t)=u0><(u2)*(z,t) (10)
needs to be made about an approximate analytical expression
for it. with
|
- 2n+1)L+z 2n+1)L+z
(U* (z,t)=e P¥(cosh But) —1)+e AL >, H(t— (+) sinr{,@v(t— (+
n=0
” 2n+1)L—z 2n+1)L—z
O [ W AL
n=0 v v
- 2nL+z 2nL+z - 2(n+1)L—z 2(n+1)L-z
3 1= 2 - 2, o HERLZ g EmbLo
n=0 v n=0 v v
(1)

where the functiorH (t) is the Heaviside function.

A dimensional analysis of expressighl) reveals that
the dimensionless normal displacemem})¢ (z,t) is a func-
tion of the two dimensionless space—time varialdéds and
vt/L and of one dimensionless paramestr=L/§ (S being

located atz=0) is 8/v. Hence this simple interpretation in-
dicates that the FWHM of the longitudinal peaks should be
proportional tod/v =1/Bv. This conclusion is confirmed by
a rigorous analytical study of expressi@hl), which shows
that the FWHMAL,,, is expressed as

the optical penetration depth of the excitation wavelength in
the material that compares the thickness of the plate to the
optical penetration. Figure 1 displays two dimensionless nor-
mal displacement curvesug)*(z/L,vt/L,ﬁL) on the rear

side @/L=1) of the plate: one for a weakly absorbing ma- The majority of our samples being opaque to the excitation
terial) (BL=1) and one for a strongly absorbing onBL(  radiation, exp¢BL)<1, and expressiofi2) reduces to:
=10).

As can be seen in this figure, the normal displacement In 4
on the rear side of the plate is a periodic function of time  At;,=—
with a period equal to R/v, and it exhibits peaks that are pu
related to the multiple longitudinal wave arrivals. These lon-
gitudinal peaks reach their maxima at timesn21)L/v
(with n integed, so that the time delay between two succes-
sive peaks is exactlyl2v: this property thus allows a pre-
cise evaluation of the longitudinal acoustic veloaity

Besides, the temporal broadening of the peaks appears t
be closely related to the optical penetration phenomenon: the
more the excitation wavelength penetrates in the material,
the larger the full width at half maximurtFWHM) of the
peaks. This temporal broadening related to the optical pen-
etration is easy to interprtWhen the excitation wavelength
penetrates in the material down to a deghit instanta-
neously activates thermal expansion sources over this deptt 0 1 2 3 4 5 6
The normal displacement step functions emitted by these dis-
tributed sources arrive in an asynchronous way on the real
side ,Of the 'plate, an,d the time delay between the first StePIG. 1. Dimensionless normal displacement curves on the rear side of the
function arrival (coming from the source located at6)  piate for a weakly absorbing materia =1) (solid line), and for a
and the last step function arrivétoming from the source strongly absorbing onedl = 10) (dashed ling

2
At1/2:_ In m) (12)

Bv

(13

0.8 4

0.6
dimensionless normal

displacement
0.4 4

0.2 4

0.0

dimensionless time
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FIG. 2. Sketch of the experimental apparatus.

. L . . . FIG. 3. “Short” pulse duration experiment, experimental temporal profile
which allows the quantitative determination of the optical gt he jaser pulse.

absorption coefficieng from the experimental measurement
of the FWHM At,,.

Finally, it appears in Fig. 1 that the amplitude of the
longitudinal peaks is also related to the value of the optica
absorption coefficient. This amplituda® can be derived
from expression$10) and(11), and is

of the pulse duration-related convolutions in the experimen-
tal normal displacement signals, and to test our deconvolu-
ion scheme. Besides, the laser is used in a multimode con-
figuration instead of a monomode one for two reasons. First,
the emitted energy must be quite high, as this energy is
a’=(1—e PYyu,. (14  spread over a large area on the front side of the sample.
Second, the multimode configuration, after the propagation
of the laser beam through the amplifier Nd:YAG rod and
then over a distance of approximat@ m in theambient air,
LProduces a laser beam with a quite uniform energy surface
distribution over a disk approximately 6 mm in diameter,
which is quite appropriate for a 1-D excitation.

The amplitudea® is thus in the general case a fraction of
the quantityuy, this fraction (1-e~A") corresponding to
the portion of the “entered” radiative flux which is ab-
sorbed by the bulk of the plate. For samples that are opaq
to the excitation radiation, exp(8L)<1, and the amplitude

0 sodi i _
a” of the longitudinal peaks is exactly equal ug, the ex The interferometric probe is an Ultra-Optec OP35-1/0

pression of .Wh'Ch IS given bfB). T his expression ”?'9*.“ then heterodyne interferometer that can perform quantitative mea-
be the starting point of a technique for the quantitative mea-

. g surements of both normal and parali@gl one given direc-
surement of the thermal expansion coefficierthrough the . : : i
: ) . : tion) displacements as functions of time over an area as small
experimental evaluation of the amplitud@ and the deriva-

; . " - as a focused He—Ne laser beam. The detection limit of this
tion of the value of the “apparent” thermal expansion co- . . A :
efficient y. interferometer is of the order of the A, and its bandpass
spreads from 1 kHz to 35 MHz.

Finally, the LeCroy 9450A digital oscilloscope records
Il. EXPERIMENT the signals with a sampling period of 2.5 ns, digitizes them
over 16 bits, and averages them.

In the two experiments that follow, the sample used is a

The experimental apparatus is sketched in Fig. 2. It 0-mm-thick plate made of a Schott NG-9 colored glass.
main components are a pulsed Nd:YAG laser for the opticalrhe optical absorption coefficient of this material at the

fast photodiode of 10-GHz bandpass for both triggering the= 3000 nL.

data acquisition and recording the temporal profile of the
laser pulse, a diverging lens of 10-cm focal distance for. _. . . " :
spreading the laser irradiation over a sufficiently large areg‘ First experiment—"short” pulse duration
on the front side of the sample so that the 1-D excitation  For this experiment, the nominal operation mode voltage
regime can be reached, an interferometric probe for the opnvas applied to the oscillator flash lamp, producing a laser
tical detection of ultrasound on the rear side of the samplepulse with an energy of 162 mJ. With such a laser intensity,
and a digital oscilloscope for the data acquisition. the diverging lens could be placed at quite a large distance
The pulsed Nd:YAG laser is composed of an oscillator(approximately 30 cinfrom the sample, ensuring an impor-
part and an amplifier part. Depending on the voltage appliedant spatial spreading of the laser beam while still keeping a
to the flash lamp of the oscillator part, the duration of thegood signal-to-noise ratio for the normal displacement detec-
laser pulse can be varied from approximately 12 ns in theion.
nominal operation mode, which corresponds to the maxi- As explained earlier, the experimental temporal profile
mum voltage applicable to the lamp, to about 100 ns for venof the laser pulse and the experimental normal displacement
low lamp voltages. This possibility of varying the pulse du- curve were recorded over the same duration with the same
ration will allow us in the following to observe the intensities sampling rate. Figure 3 displays the former curve, as given

A. The experimental apparatus
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quasianalytical 3-D simulation modelThis model solves
the acoustic wave propagation equations containing thermal
expansion source terms over an infinite plate of finite thick-
ness with the restrictive assumptions of an axisymmetrical
configuration and negligible thermal diffusion. The radial
and normal displacement fields are derived analytically in
the Hankel and Laplace spaces, and the only numerical step
consists in performing numerical inverse Hankel and Laplace
transformations to bring back the two displacement fields in
the real spaces. A dimensional study of the acoustic wave
propagation equations shows that, in the case of a uniformly
0 50 100 distributed laser pulse impinging on the front side of an iso-
tropic sample over a disk of radids, the mechanical dis-
placement fieldu can be expressed as

0.8
0.6
voltage (V)

0.4

0.2 4

0.0

time (ns)

FIG. 4. Enlargement of Fig. 3 over the time intervaR0 ns<t<100 ns. u(r,z,t)=ugXu*(r,z,t). (15

In this relationy is the radial space coordinate, and the quan-
by the fast photodiode. The duration of the recording of thistity u, has units of distance, so that the mechanical displace-
curve (equal to 2.5us), imposed by the duration of the re- ment fieldu* is dimensionless. The expressionugfis given
cording of the normal displacement curve, may look inad-in (8), but this time the energy per surface unit “entering”
equate to the optimal determination of the temporal profile othe platel, is limited to the irradiation disk and hence is
the laser pulse, but it is to be reminded that no informatiorequal toE, /732 where E, is the energy “entering” the
was lost during this recording, since the sampling period ofjate. Finally, the dimensionless field can be shown to be
the digital oscilloscope for such recording durations remaing function of seven dimensionless parametéijsthe three
equal to 2.5 ns. An enlargement of Fig. 3 over the timegimensionless space and time variabl&s, z/L, andvt/L,
interval —20 ns<t<100 ns is shown in Fig. 4. From this (jj) one dimensionless parameter related to the acoustic prop-
figure, the FWHM of the pulse can be correctly evaluated: iferties of the material, namely its Poisson coefficienand
is 14 ns. (iii) three dimensionless paramet&#., AL, andv /L (7

In order for the experimental profile of Fig. 3 to become peing a characteristic time of the temporal profile of the laser
the normalized profiléf(t) of relations(1), (2), and(9), it pulsé) that fully describe the features of the laser excitation.
was first shifted in the voltage directiofin order for its  Further details about the model are reported in the Appendix.
ground level to be brought to) Othen divided by its integral The Poisson coefficientof our glass sample was evalu-
over the whole recording duration. Finally, a numericalated to be 0.22 through classical piezoelectric transducer
Laplace transformation was applied to it. The experimentaneasurements of the longitudinal and shear acoustic veloci-
normal displacement curve recorded on the rear side of thges, Concerning the irradiation radii¥s this quantity was
sample is displayed in Fig. 5. This curve exhibits two intensesstimated with the help of very simple geometrical optics.
longitudinal peaks that, for the moment, result from temporalrhe sample being located a distamtaway from the diverg-
convolutions between optical penetration and laser pulse dqng lens of focal distancé, the radius>, of the beam im-

ration effects. _ S pinging on the sample is related to the anat the entrance
In order to study to which extent the finite size of the surfacepf the diverging lens through the relation:

irradiation affects the temporal features of the two longitudi-
nal peaks, we simulated the experiment with the help of a §:1+9 (16)
=z
The values of the experimeig-=3 mm, d=30 cm, andf
=10 cm) yielded3 =12 mm. Finally, the characteristic time
7 of the temporal profile of the laser pulse was derived from
its FWHM® and was found to be 5.7 ns. All the data of the
os ] experiment being known, we calculated with the help of the
displa'c]:(e)nr?;ilt(nm) ’ 3-D simulation model the theoretical dimensionless normal
displacement curve at the epicenter on the rear side of the
sampleu? (r/%=0,z/L=1pt/L) generated by the uniform
007 irradiation of its front side over a disk of radis and com-
pared this curve to the one that would be obtained in the case
‘ . . ' . of a truly uniformly distributed laser pulse presenting the
0 500 1000 1500 2000 2500 same energy surface densjigxpression$6)—(8) of the 1-D
time (29) modell. This comparison is displayed in Fig. 6.
One notices first that the top curve of Fig. 6 is very

FIG. 5. Experimental normal displacement curve recorded on the rear sidg?m"ar to the _ex_perimental one of Fig. 5, which is a good
of the sample. sign of the validity of the parameters entered as data of the
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FIG. 6. Finite extension of the laser excitation and deviation from the 1-DFIG. 7. Comparison of the convolution-free normal displacement citope
model, theoretical dimensionless normal displacement curve at the epicentHve, left scalpto the initial experimental curve of Fig. &ottom curve,

on the rear side of the sample generated by the uniform irradiation of it§ight scal.

front side over a disk of radius (top curve, left scalg and this curve minus

the one that would be obtained in the case of a truly uniformly distributedducing important negative displacements that constitute the
laser pulse presenting the same energy surface desitisom curve, right “wash.”

scalg. A numerical Laplace transformation was applied to the

experimental normal displacement curve of Fig. 5, this
3-D simulation model. Second, the bottom curve of Fig. 6| aplace transform was then divided by the one of the experi-
reveals that the normal displacement generated by the finiigiental temporal profile of Fig. 3, and finally the
extension irradiation deviates from the 1-D model only afterconyolution-free normal displacement curve was constructed
a dimensionless timeT/L that is approximately equal to 4 jith the help of a numerical inverse Laplace transformation.
in Fig. 6 and that can be guessed to be a growth function of  Figure 7 compares the convolution-free normal displace-
the laser spot extension dimensionless paraniter These  ment curve to the initial experimental curve of Fig. 5. First,
preceding two results could be expected. In an isotropic Magne notices that the convolution-free curve is slightly noisier
terial, the acoustic information propagates with a velocitythan the experimental one. This noise emergence is a direct
that cannot exceed the longitudinal acoustic velogityon-  consequence of the division of the Laplace transform of the
sequently, from the point of view of the mechanical displace-experimental normal displacement curve by the one of the
ment at a given point of the sample, there is no differencexperimental temporal profile of the laser pulse, which re-
between a uniform irradiation over a finite extens®and a  gy|ts in an amplification of the high frequencies whereas the
truly Uniformly distributed irradiation as |Ong as there haS|OW frequencies are unchanged_ Hence the high_frequency
not been enough time for the mechanical effects of the themgise of the experiment happens to be amplified by the de-
mal expansion sources located outs&lm the 1-D configu-  convolution operation. Second, one notices that the peaks of
ration to reach the pOint. In the case of a uniform irradiationthe Convo|ution_free curve are |arger and narrower than the
over a disk of radius, the mechanical displacement at the gnes of the experimental curve. Here again, these two points
epicenter on the rear side of the sample is not different fronyre direct consequences of the deconvolution operation:
the one that W0u|d I‘esu|t fl’0m a truly uniformly distributed When the energy of the laser pu'se is released instanta-

excitation until a timeT defined by neously instead of over a certain duration, the longitudinal
\/LZTEZ oT 2 peaks are no longer flattened and broadened by temporal
T=———, ie,—=1/1+ —) . (17) convolution ef-
v L L
The laser spot extension dimensionless paraniterof the
experiment is 4, and relatiofl7) givesvT/L~4.1, which . L,

means that the extension of the laser excitation in the experi-
ment is sufficient to ensure that the normal displacement

recorded at the epicenter on the rear side of the sample will = 11 I
not deviate from the 1-D model before a tifieequal to 4.1 displa- displa-
times the delay for a longitudinal trip through the sample. @m |

Consequently, the first two longitudinal arrivals will not be
affected by “non-1-D” effects. Indeed, the two peaks set

apart, the experimental normal displacement of Fig. 5 re- -1 1 -0

mains approximately equal to O over the time intervadtO , , , ‘ , ,

<2300 ns that includes the two peaks. The “non-1-D” ef- 2000300 400 300 600 700 800 900

fects, which are related to the finite size and also the imper- time (ns)

fect uniformity of the surface irradiation, start to affect the

experimental normal displacement signalt &2300 ns, in- FIG. 8. Enlargement of Fig. 7 over the time interval 208s=900 ns.
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FIG. 10. Plot of the cross-correlation functidr(7).

fects. The FWHMs of the two longitudinal peaks before andthe measurement of the thickndsef the sample. This mea-
after the deconvolution can readily be evaluated from Figs. &urement was performed again with a finer apparatus, giving
and 9, which are enlargements of the peaks of Fig. 7. Th& =3.040 mm:3 um, i.e.,, L=3.040 mm:-1%.,, and the
results are summarized in Table I: one can see that the dealue of the longitudinal velocity was derivedy
convolution scheme reduces the FWHMSs in a proportion of=5443 m/s- 6 %eo.
approximately 19%. Finally, the knowledge of the value af and the mea-
One also notices in Figs. 8 and 9 that the peaks of theurement of the FWHMs of the longitudinal peaks of the
convolution-free curve are slightly shifted to the left with experimental convolution-free normal displacement curve al-
respect to the ones of the experimental curve. This pointow the experimental evaluation of the optical absorption
could also be expected from the deconvolution operation¢coefficient 8 through relation(13). Taking Atq,=112 ns,
although the exact quantity of the shift is not a reliable valueone obtains8=2300 m L. Figure 11 confronts the experi-
because of the imprecision in the definition of the time originmental convolution-free normal displacement curve to the
in the experimental temporal profile of the laser pulse. Moreone obtained from the analytical expressidd) of the nor-
generally, the absolute times of the experiments are not prenal displacement with the values derived previously for
cisely defined because of an uncontrollable delaf ap- v, andL. A very satisfactory agreement between experiment
proximately 180 nsinduced by the demodulation unit of the and theory is observed, which gives credit to our evaluations
interferometric probe in the recordings. On the other handpf both the optical absorption coefficient and the longitudinal
the relative times are accurately measured and, remindingcoustic velocity.
that two successive peaks of the convolution-free curve are
separated_by a d_elay of exactly &, _th_ls quant|ty_ 2/v can  ~ cocond experiment—“long” pulse duration
be determined with very good precision. For this evaluation,
we used a cross-correlation technique based on the function: In order to test our deconvolution scheme in the case of
t more serious laser pulse duration effects, another experiment
@(T)zf ud(L,tHud(L,t+ 7)dt. (189  was performed on the colored glass sample with a lower
t1
In this expressionug(L,t) is the experimental convolution-
free normal displacement curve, and the time intefvalt, ]
is the interval of occurrence of the first longitudinal peak. A
plot of the function®(7) is displayed in Fig. 10. This plot
exhibits an intense and quite symmetrical peak centered at
r=1.117us, which corresponds to the experimental evalu-
ation of 2/v. Moreover, this value can be determined with
an absolute precision af5ns, i.e., a relative precision of
+5%.. The quality of the evaluation of the longitudinal
acoustic velocityy is then dependent upon the precision of

normal
displacement
(arbitrary units)

TABLE 1. “Short” pulse duration experiment, FWHMs of the two longi- 0 500 1000 1500 2000 2500

tudinal peaks before and after the deconvolution. )
time (ns)

First peak Second peak
FIG. 11. Confrontation of the experimental convolution-free normal dis-
Before deconvolution 137 ns 139 ns placement curvédashed lingto the one obtained from the analytical ex-
After deconvolution 110 ns 114 ns pression of the normal displacement with the values derive@,for, andL

(solid line).
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FIG. 12. “Long” pulse duration experiment, enlargement over the time FIG. 14. Filtered normal displacement curitep curve, left scaleand the
interval — 40 ns<t=200 ns of the experimental temporal profile of the laser difference between this curve and the initial experimental one of Fig. 13
pulse. (bottom curve, right scaje
3/L is then 2, and formulé17) allows the evaluation of the

voltage applied to the oscillator flash lamp. This time, thedimensionless tim@ T/L at which “non-1-D” effects start
laser pulse was only 63 mJ in energy, and, to compensate feo alter the shape of the normal displacement curve: this
this energy decrease and to keep a good signal-to-noise rafifimensionless timevT/L is approximately 2.2. Conse-
for the normal displacement detection, the diverging lens haduently, the second longitudinal peak of Fig. 13 lies in the
to be brought closer to the sample, at a distance of approxi‘wash” part of the signal, which is the part affected by
mately 10 cm. “non-1-D” effects. But on the other hand, the time interval

The same procedure as the one presented for the explaif occurrence of the first longitudinal peak is anterior to the
tation of the “short” pulse duration experiment was usedemergence of the “wash,” and it is reasonable to assume
here. Figure 12 displays an enlargement over the time intetthat this peak has not been affected by “non-1-D” effects.
val —40 ns<t=200 ns of the experimental temporal profile \We will thus in the following concentrate on the first longi-
of the laser pulse: the FWHM of the pulse is 45 ns, whichtudinal peak of Fig. 13.
this time is not small compared to the FWHMs of the The pulse duration being longer than in the preceding
convolution-free longitudinal peaks. experiment, its frequency spectrum spreads over a smaller

The experimental normal displacement curve observegtequency range. Consequently, the phenomenon of experi-
on the rear side of the sample is shown in Fig. 13. As thanental noise amplification induced by the division of the
diverging lens was brought closer to the sample, the lasaraplace transform of the experimental normal displacement
irradiation was not as well distributed over its front side as incurve by the one of the experimental temporal profile of the
the preceding experiment, resulting in an earlier emergenciser pulse starts at lower frequencies. In the preceding ex-
of “non-1-D” negative normal displacements after  periment, the normal displacement signal was “naturally”
=1200 ns. This point is confirmed by the theory developediltered by the cut-off frequency85 MHz) of the interfero-
in the preceding section. The radibtisof the laser excitation metric probe. Here, we had to perform an additional numeri-
can be evaluated with the help of relatici6). The values of  cal filtering of the normal displacement signal with a cut-off
the experiment(c=3mm and d=f=10cm vyield 3 frequency of 12 MHz in order to circumvent the noise am-
=6 mm. The laser spot extension dimensionless parametgiification problem over the frequency range spreading from
12 to 35 MHz. Figure 14 displays the filtered normal dis-
placement curve and the difference between this curve and
the initial experimental one of Fig. 13. Figure 15 compares
05 1 the convolution-free normal displacement curve to the fil-
tered one of Fig. 14. The same remarks as the ones for the
preceding experiment can be made about the noise of the

normal convolution-free curve and the heights and widths and time
displacement (nm) 0.0 1 positions of its longitudinal peaks. Concerning the FWHM of
the first peak, this quantity goes from 175 ns on the filtered
curve to 143 ns on the convolution-free one. The FWHM of
the convolution-free curve is thus quite different from the
one measured in the preceding experim@d® ng, which is
0 500 1000 1500 2000 2500 inconsistent with the theory developed previously. But in the
“long” pulse experiment, we had to filter the experimental
normal displacement curve of Fig. 13 with a cut-off fre-

FIG. 13. Experimental normal displacement curve observed on the rear siddU€NCcy _Of 12 MHz, and doing so, we also filtered the
of the sample. convolution-free

-0.5

time (ns)
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a purely optical method consisting in the measurement of the

7 20 radiative flux transmitted through the sample. The transmis-
o5 s sion being weakof the order of a few %, this measurement
‘ was performed with the help of an intensity-modulated
0o T Nd:YAG laser and a lock-in detection. The transmission of
displa- displa- the sample and the reflection coefficients of its two surfaces
. I were evaluated to be 1.5%. and 3%, respectiveig reflec-
tion coefficients of the two surfaces were checked to be equal
1o oo within the experimental precisipnand from these values the
internal transmission of the sample was calculated to be
s 05 1.6%.. This internal transmission being equal to expLl), a

0 00 100 150 2000 2500 new evaluation of the optical absorption coefficightvas
derived: 2100 m!, which is much nearer to our laser-
ultrasonics evaluation than to the value given by the manu-

time (ns)

FIG. 15. Comparison of the convolution-free normal displacement curvefacwrer' . .
(top curve, left scaleto the filtered one of Fig. 14bottom curve, right In conclusion, our deconvolution scheme has proved to
scalg. be an efficient technique that allows us to extract one of the

temporal convolutions that take place in a laser-ultrasonics
curve of Fig. 15. The discrepancy between the FWHM val-experiment. As underlined earlier, some precautions need to
ues of the two experiments is then maybe due to the fact thdte taken when dealing with “long” pulse duratioff§ong”
the contributions of the frequencies lying in the range be-meaning that the FWHM of the pulse is not small compared
tween 12 and 35 MHz to the signal are lost in the “long” to the FWHM, given by expressiofi3), of the convolution-
pulse experiment. In order to check the validity of this inter-free longitudinal peaks some additional numerical low-pass
pretation, we kept the values gfandv found in the preced- filtering may be necessary in order to circumvent the noise
ing experiment, we calculated the theoretical convolution-amplification phenomenon that affects lower and lower fre-
free normal displacement curve from its analytical quencies as the pulse duration is longer, and an obvious con-
expression(11), and we filtered this curve with a cut-off clusion of that point is that the shorter the pulse duration, the
frequency of 12 MHz. The confrontation of the theoreticaleasier and more efficient the deconvolution. Nevertheless,
filtered convolution-free normal displacement curve to theeven with the shortest pulse duration attainable with our gen-
experimental one is shown in Fig. 16. The very good agreeeration laser, the deconvolution has been shown to reduce
ment that is obtained between the temporal shapes of the firstibstantially the FWHMs of the experimental longitudinal
longitudinal peaks of these two curves confirms our previougpeaks, which allowed a better evaluation of the optical ab-

evaluations of3 anduv. sorption coefficient as well as a very precise determination of
the longitudinal acoustic velocity. We plan in the future to
lIl. DISCUSSION AND CONCLUSION make use of this temporal deconvolution ability to derive

_ experimental signals that are more directly affected and thus
If there cannot be any doubt about the evaluation of thenore “sensitive” to material-related physical phenomena

longitudinal acoustic velocity, on the other hand the opti- such as the viscosity-induced acoustic dispersion in poly-
cal absorption coefficient3 measured experimentally mers, for example.

(2300 m'Y) differs quite significantly from the value given

by the manufacturer (3000™). In order to solve this am-

biguity, we evaluated the optical absorption coefficient withAPPENDIX: DESCRIPTION OF OUR
QUASIANALYTICAL 3-D MODEL FOR THE
SIMULATION OF THE THERMOELASTIC
GENERATION OF ULTRASOUND

For the purpose of simplicity, we will present the prin-
ciple of resolution of the acoustic wave propagation equa-
tions in the case of an isotropic material. The following
mathematical developments can easily be extended to the
case of an anisotropic material presenting a cylindrical sym-
metry of axis 02z).

Let us consider an infinite plate of thickndssmpinged
on its front side by a laser excitation presenting a radial

: . . . symmetry. The configuration of the problem being axisym-
0 500 1000 1300 2000 2500 metrical, we will in the following make use of the cylindrical
fime (ns) coordinatesi(,z). With the assumption of negligible thermal
diffusion, the temperature elevation fielh is simply the
FIG. 16. Confrontation of the theoretical filtered convolution-free normal integration over time of the optically induced thermal source
displacement curvésolid line) to the experimental on@ashed ling divided by pC,; the analytical expression df6 is

0.5 4

normal
displacement o)
(arbitrary units) 0.0 4+

-0.5 4
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The same procedure can be applied to the two acoustic wave

BEo _ t
Ad(r,zt)= . © ﬁzg(f)J’Of(T)dT- (A1) propagation equation3) and(A4). Introducing the quan-
P e
tity:
In this expressionk, is the energy “entering” the plate,
which is equal to (+ R) E;, whereE; is the incident energy Une XEo _3Cn—4c,  ak (A9)
emitted by the excitation laser arRl the reflection coeffi- 0 PC,ﬂTE2 Cna PCp7T22

cient of the impinged front side at the excitation Wavelength.Which has units of distance. the two equations governing the
The functiongg(r) andf(t) are the radial and temporal pro- ' q 9 9

) ) . ) imensionless radial displacement fielfi=u, /uy and the
files of the laser pulse; these two functions are normalized,. . . :

o dimensionless normal displacement fielfl=u,/u, can be
through the relations:

derived from Eqs(A3) and (A4); they take the following

o 0 forms:
f g(r)2zrdr=1 and j f(t)dt=1. (A2)
0 0 Pur 1 [éPur 1 aur uF . ur

The radial component, and the normal componen;j of the g*Z  S*2 | g2 + r* or* r*2 te 9z 2
mechanical displacement field are obtained by the resolution -
of the following two acoustic wave propagation equations 1-c* Ju;  B* 9(A6") (A10)
containing thermal expansion source terms: X* 0 or* 9zv  X* g

J%u, (a2u, 1 du, u,) 2u, 2, % I - * 2,

— J°u c J°u 1 du J°u

p—7=Cu| =7+ - ——— 7| +Ca—-7 +(C11—Css) z _ z -z z

ot or ror r 0z GFZ T S22 T gpx 9*2

92U A0
= (;Z_(3C11_4C44)a%’ (A3) +1—C* 02uf +i&u:‘ g I(A %)
S* \ar* azF  r* oz* z*

du, #u, 1 du, 5u, INEL
P 7 =Caa| 57t =~ | +C1— 7 +(C11—Csg) (A1D)

at ar r oJr 0z . . .. . .

in which two additional dimensionless parameters have been
d%u, 1 u, d(A ) introduced: a geometrical paramef®f =3/L and a mate-
a9z r oz 9z rial parametec™ = c44/Cy; related to the Poisson coefficient

In these two equationg;;; and c,, are the two principal
components of the rigidity tens@c] (written with the two-
index notation of the isotropic material, and is the linear
thermal expansion coefficient of the material.

As a first step, we rewrite expressithl) and Eqs(A3)

and (A4) with the help of dimensionless parameters. Intro-

ducing the dimensionless space and time variablesr/%,
(2 being a characteristic length in tmedirection, z* =z/L
andt* =ut/L [v being the longitudinal acoustic velocity of
the material, equal tocf;/p)*?], and defining a dimension-

less parametef* = BL measuring the degree of opaqueness

of the sample, the temperature elevation fil@lcan be re-
written in a dimensionless way by introducing the following
three quantities:

_ PBEg
Aﬁo—m, (A5)
y*(r*)=m32g(r)=m2%g(3r*), (A6)
.o _L _L L *)
e (t )—;f(t)—;f ;t . (A7)

One can note that the quantityd, has units of temperature
and that, unlike the functiong(r) and f(t), the functions

v through the relatio* = (2v—1)/(2v—2).

Equations(A10) and (Al11) are solved in the Laplace
and Hankel spaces. Applying a Laplace transformafaet
notedL) and a Hankel transformation of order(denoted
H,) to Eq.(A10), and a Laplace transformation and a Hankel
transformation of order @denotedH,) to Eq. (Al11), and
introducing the following notations:

UF(&*,2",s")=LHy[uf (r*, 2" ,t")], (A12)
U7 (&*.2",s")=LH[u; (r*,z",t*)], (A13)
A®* (&%, ,5*)=LHo[A 6* (r*,2* t*)]
ZFS? g (ALd)
with
I* (&) =Hol y*(r*)] (A15)
and
P*(s*)=L[¢*(t*)] (A16)

in which & is the dimensionless Hankel variable asidis
the dimensionless Laplace variable, one comes to the follow-

y*(r*) and ¢*(t*) are dimensionless. The dimensionlessing two equations:

temperature elevation fieldl 6* = A /A 6,, when expressed
with the help of the functions* (r*) and ¢* (t*), takes the
following form:

AH*(r*,z*,t*)ze’ﬁ*z*y*(r*)ft ¢* (7*)d. (A8)
0
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9°U? & gur * | 2 These conditions of zero mechanical stress on each boundary
a?er(l—c*) ST o s*2+c* 2—*) u; surface of the plate yield the following equations:
ou ou
0 AG)* F*Q* * % S —r+ —_z = = =
_p ( ) )=—B*2 P e (A18) Oy 044( o7 T |0 atz=0 andz=L, (A25)
Jz s
his diff il . . au, U, Ju,
This differentia §ysten[(A17),(A18)] is easy to |.ntegrate. 0,7~ (C11— 2C42) 7+T +cyqq E_(3C11_4C44)
Its general solutionY; ,U}) can be expressed in the fol-
lowing way: XaAf=0 atz=0 andz=L, (A26)
& * % >k in which o,, and o,, are, respectively, ther(z) and the
*_ > * M Z -m;z rz zz ' '
Ur % (—Zpreh® +Zmpe e (z,z) components of the stress tensor. Rewriting condition
.y . . (A25) in a dimensionless way and then applyingL&l;
+m3(Rpse™? +Rmse ™) +Rie # 7, transformation to the resulting dimensionless equation
* % * % * &U: g* * * *
U;:milc(zpilcemlz +Zmie M) 4 2 9 S U;=0 atz*=0 andz*=1. (A27)

E*
g . . gt In a similar fashion, rewriting conditiofA26) in a dimen-
X(-Rpse™? +Rmpe 7)) +Z5e £, sionless way and then applyingLad, transformation to the
(A20) resulting dimensionless equation yields:

in which we have introduced the following notations: (1-2¢%) ;_i u* + 5U:£ B A% =0
Jz
mi(§*,5*)= (2_* +s*5, (A21) atzx=0 andz*=1. (A298)
2 g2 The four boundary conditiori$A27),(A28)] written with the
m} (£%,s%)= (_*> — (A22)  analytical expressiongA19) and (A20) of UY and U7 lead
z ¢ to a linear system of four equations allowing the evaluation
B* & T*o* of the four constants of integratiapy , Zmj , Rp5, and
RE (&% ,s%)= iy T (A23)  Rng . This system can be expressed in the following matrix
1 form:
B2 T*d* A]l-x=b. A29
23(5*13*):m*2_ * 2 s* (A24) [ ] ( )
17 7B In this matrix equation, the vector
and in which the quantitieZp; , Zmy , Rp; , andRny; are Zpt
four constants of integratioffunctions of é* ands*) to be 7 mt
determined. X= . (A30)
These four constants of integration are evaluated with R
the help of the four boundary conditions of the problem. Rmg
12 5 L]
[
8 =
experimental calculated
~ radial e e - Lo radial
displacement displacement
(nm) (nm)
° Nw*wwmwm -4
T ! ] I :
time (us)

FIG. Al. Radial displacement curves on the rear side of the Schott BG-18 colored glass sample at the epicenter, comparison of the calc(iizsedurve
line, right scal¢ to the experimental onésolid line, left scalg
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is the unknown and the matrpA] and the vectob are formed profiled™ (¢*) and®* (s*). Then, for any value of

A A A A the dimensionless dep#tf within the sample and of the two
1 1n 13 13 dimensionless spectral variablés ands*, it is possible to
Ape™  Ape ™A™ —Ape ™ calculate the values o} (¢*,z*,s*) and U3 (&*,z*,s*)
[A]= A A A A using the mathematical developments presented above. The
31* 31 . 33* 33 . last step in the resolution of the problem is also the only
Azie™ —Age ™ Age™ Age ™ purely numerical step of the model: it consists in applying
numerical inverseLH, transformations toU; (&*,z*,s*)
and : . ri>.
and numerical inverse LHy transformations to
b, U3 (&*,z*,s*) in order to reach the real dim